Reduced differential transform method for solving time and space local fractional partial differential equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5230-5238.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We apply the new local fractional reduced differential transform method to obtain the solutions of some linear and nonlinear partial differential equations on Cantor set. The reported results are compared with the related solutions presented in the literature and the graphs are plotted to show their behaviors. The results prove that the presented method is faster and easy to apply.
DOI : 10.22436/jnsa.010.10.09
Classification : 35R11, 35A22, 65R10
Keywords: Approximate solution, local fractional derivative, partial differential equations, reduced differential transform method

Acan, Omer  1 ; Al Qurashi, Maysaa Mohamed  2 ; Baleanu, Dumitru  3

1 Department of Mathematics, Art and Science Faculty, Siirt University, Siirt, Turkey
2 Department of Mathematics, Faculty of Art and Science, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia
3 Department of Mathematics and Computer Sciences, Faculty of Art and Science, Cankaya University, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania
@article{JNSA_2017_10_10_a8,
     author = {Acan, Omer  and Al Qurashi, Maysaa Mohamed  and Baleanu, Dumitru },
     title = {Reduced differential transform method for solving time and space local fractional  partial differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5230-5238},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.09/}
}
TY  - JOUR
AU  - Acan, Omer 
AU  - Al Qurashi, Maysaa Mohamed 
AU  - Baleanu, Dumitru 
TI  - Reduced differential transform method for solving time and space local fractional  partial differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5230
EP  - 5238
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.09/
DO  - 10.22436/jnsa.010.10.09
LA  - en
ID  - JNSA_2017_10_10_a8
ER  - 
%0 Journal Article
%A Acan, Omer 
%A Al Qurashi, Maysaa Mohamed 
%A Baleanu, Dumitru 
%T Reduced differential transform method for solving time and space local fractional  partial differential equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5230-5238
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.09/
%R 10.22436/jnsa.010.10.09
%G en
%F JNSA_2017_10_10_a8
Acan, Omer ; Al Qurashi, Maysaa Mohamed ; Baleanu, Dumitru . Reduced differential transform method for solving time and space local fractional  partial differential equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5230-5238. doi : 10.22436/jnsa.010.10.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.09/

[1] O. Acan N-dimensional and higher order partial differential equation for reduced differential transform method, Science Institute, Selcuk Univ., Turkey, 2016

[2] Acan, O. The existence and uniqueness of periodic solutions for a kind of forced rayleigh equation, Gazi Univ. J. Sci., Volume 29 (2016), pp. 645-650

[3] Acan, O.; Firat, O.; Keskin, Y. The use of conformable variational iteration method, conformable reduced differential transform method and conformable homotopy analysis method for solving different types of nonlinear partial differential equations, Proceedings of the 3rd International Conference on Recent Advances in Pure and Applied Mathematics, Bodrum, Turkey, 2016

[4] Acan, O.; Firat, O.; Keskin, Y.; Oturanc, G. Solution of conformable fractional partial differential equations by reduced differential transform method, Selcuk J. Appl. Math. (2016)

[5] Acan, O.; Firat, O.; Keskin, Y.; Oturanc, G. Conformable variational iteration method, New Trends Math. Sci., Volume 5 (2017), pp. 172-178

[6] Acan, O.; Y. Keskin Approximate solution of Kuramoto-Sivashinsky equation using reduced differential transform method , AIP Conference Proceedings, Volume 1648 (2015), pp. 1-470003 | DOI

[7] Acan, O.; Keskin, Y. Reduced differential transform method for (2+1) dimensional type of the Zakharov-Kuznetsov ZK(n,n) equations, AIP Conference Proceedings, Volume 1648 (2015), pp. 1-370015 | DOI

[8] Acan, O.; Keskin, Y. A comparative study of numerical methods for solving (n + 1) dimensional and third-order partial differential equations, J. Comput. Theor. Nanosci., Volume 13 (2016), pp. 8800-8807 | DOI

[9] Acan, O.; Y. Keskin A new technique of Laplace Pade reduced differential transform method for (1 + 3) dimensional wave equations, New Trends Math. Sci., Volume 5 (2017), pp. 164-171

[10] Al-Amr, M. O. New applications of reduced differential transform method, Alexandria Eng. J., Volume 53 (2014), pp. 243-247 | DOI

[11] Baleanu, D.; Bhrawy, A. H.; Gorder, R. A. Van New trends on fractional and functional differential equations, Abstr. Appl. Anal., Volume 2015 (2015), pp. 1-2

[12] Baleanu, D.; Sayevand, K. Performance evaluation of matched asymptotic expansions for fractional differential equations with multi-order, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 59 (2016), pp. 3-12

[13] Baleanu, D.; Machado, J. A. Tenreiro; Cattani, C.; Baleanu, M. C.; Yang, X.-J. Local fractional variational iteration and decomposition methods for wave equation on Cantor sets within local fractional operators, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6

[14] Baykus, N.; M. Sezer Solution of high-order linear Fredholm integro-differential equations with piecewise intervals, Numer. Methods Partial Differential Equations, Volume 27 (2011), pp. 1327-1339 | DOI | Zbl

[15] Beyer, H.; Kempfle, S. Definition of physically consistent damping laws with fractional derivatives, Z. Angew. Math. Mech., Volume 75 (1995), pp. 623-635 | DOI | Zbl

[16] Cui, Z.-J.; Mao, Z.-S.; Yang, S.-J.; Yu, P.-N. Approximate analytical solutions of fractional perturbed diffusion equation by reduced differential transform method and the homotopy perturbation method, Math. Probl. Eng., Volume 2013 (2013), pp. 1-7 | Zbl

[17] Golmankhaneh, A. K.; Yang, X.-J.; Baleanu, D. Einstein field equations within local fractional calculus, Rom. J. Phys., Volume 60 (2015), pp. 22-31

[18] Guo, Z.-H.; Acan, O.; S. Kumar Sumudu transform series expansion method for solving the local fractional Laplace equation in fractal thermal problems, Therm. Sci., Volume 20 (2016), pp. 1-739 | DOI

[19] Gupta, P. K. Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method, Comput. Math. Appl., Volume 61 (2011), pp. 2829-2842 | DOI | Zbl

[20] He, J.-H. A tutorial review on fractal spacetime and fractional calculus, Internat. J. Theoret. Phys., Volume 53 (2014), pp. 3698-3718 | Zbl | DOI

[21] Herzallah, M. A. E.; Baleanu, D. On fractional order hybrid differential equations, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-7

[22] Jafari, H.; Jassim, H. K.; Moshokoa, S. P.; Ariyan, V. M.; Tchier, F. Reduced differential transform method for partial differential equations within local fractional derivative operators, Adv. Mech. Eng., Volume 8 (2016), pp. 1-6 | DOI

[23] Y. Keskin Partial differential equations by the reduced differential transform method, Science Institute, Selcuk Univ., Turkey, 2010

[24] Keskin, Y.; Oturanc, G. Reduced differential transform method for partial differential equations, Int. J. Nonlinear Sci. Numer. Simul., Volume 10 (2009), pp. 741-750 | DOI

[25] Keskin, Y.; G. Oturanc Reduced differential transform method for generalized KdV equations, Math. Comput. Appl., Volume 15 (2010), pp. 382-393 | DOI

[26] Keskin, Y.; Oturanc, G. The reduced differential transform method: A new approach to factional partial differential equations, Nonlinear Sci. Lett. A., Volume 1 (2010), pp. 207-217

[27] Kurul, E.; Savasaneril, N. B. Solution of the two-dimensional heat equation for a rectangular plate, New Trends Math. Sci., Volume 3 (2015), pp. 76-82

[28] Ma, M.; Baleanu, D.; Gasimov, Y.; Yang, X.-J. New results for multidimensional diffusion equations in fractal dimensional space , Rom. J. Phys., Volume 61 (2016), pp. 784-794

[29] F. Mainardi Fractional relaxation-oscillation and fractional diffusion-wave phenomena , Chaos Solitons Fractals, Volume 7 (1996), pp. 1461-1477 | DOI

[30] Podlubny, I. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999

[31] Razminia, A.; Baleanu, D. Fractional order models of industrial pneumatic controllers, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-9

[32] Samko, S. G.; Kilbas, A. A.; O. I. Marichev Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolski˘ı, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993

[33] Saravanan, A.; Magesh, N. A comparison between the reduced differential transform method and the Adomian decomposition method for the Newell-Whitehead-Segel equation, J. Egyptian Math. Soc., Volume 21 (2013), pp. 259-265 | Zbl | DOI

[34] Sarikaya, M. Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals, Proc. Amer. Math. Soc., Volume 145 (2017), pp. 1527-1538 | DOI

[35] Schneider, W. R.; W. Wyss Fractional diffusion and wave equations , J. Math. Phys., Volume 30 (1989), pp. 134-144 | DOI

[36] Singh, B. K.; Mahendra A numerical computation of a system of linear and nonlinear time dependent partial differential equations using reduced differential transform method, Int. J. Differ. Equ., Volume 2016 (2016), pp. 1-8 | Zbl

[37] Yang, X.-J. Local fractional functional analysis and its applications, Asian Academic Publisher, Hong Kong, 2011

[38] Yang, X.-J. Advanced local fractional calculus and its applications, World Science, New York, 2012

[39] Yang, X.-J.; Baleanu, D.; Srivastava, H. M. Local fractional similarity solution for the diffusion equation defined on Cantor sets , Appl. Math. Lett., Volume 47 (2015), pp. 54-60 | Zbl | DOI

[40] Yang, X.-J.; Gao, F.; Srivastava, H. M. Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations, Comput. Math. Appl., Volume 73 (2017), pp. 203-210 | Zbl | DOI

[41] Yang, X.-J.; L.-Q. Hua Variational iteration transform method for fractional differential equations with local fractional derivative, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-9

[42] Yang, X.-J.; Srivastava, H. M.; Cattani, C. Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Rep. Phys., Volume 67 (2015), pp. 752-761

[43] Yang, X.-J.; Machado, J. A. Tenreiro; Baleanu, D.; C. Cattani On exact traveling-wave solutions for local fractional Korteweg-de Vries equation, Chaos, Volume 26 (2016), pp. 1-5 | DOI

[44] Yang, X.-J.; Machado, J. A. Tenreiro; Cattani, C.; Gao, F. On a fractal LC-electric circuit modeled by local fractional calculus, Commun. Nonlinear Sci. Numer. Simul., Volume 47 (2017), pp. 200-206 | DOI

[45] Yang, X.-J.; Machado, J. A. Tenreiro; J. J. Nieto A new family of the local fractional PDEs , Fund. Inform., Volume 151 (2017), pp. 63-75 | Zbl | DOI

[46] Yang, X.-J.; Machado, J. A. Tenreiro; H. M. Srivastava A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach, Appl. Math. Comput., Volume 274 (2016), pp. 143-151 | DOI

[47] Zhang, Y.; Cattani, C.; Yang, X.-J. Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, Volume 17 (2015), pp. 6753-6764

[48] Zhang, Y.; Yang, X.-J. An efficient analytical method for solving local fractional nonlinear PDEs arising in mathematical physics, Appl. Math. Model., Volume 40 (2016), pp. 1793-1799 | DOI

Cité par Sources :