Impact of non-separable incidence rates on global dynamics of virus model with cell-mediated, humoral immune responses
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5201-5218.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the dynamical behavior of a virus model into which cell-mediated and humoral immune responses are incorporated. The global stability of an infection-free equilibrium and four infected equilibria is established via a Lyapunov functional approach. The present construction methods are applicable to a wide range of incidence rates that are monotone increasing with respect to concentration of uninfected cells and concave with respect to the concentration of free virus particles. In addition, when the incidence rate is monotone increasing with respect to concentration of free virus particles, the functional approach plays an important role in determining the global stability of each of the four infected equilibria. This implies that the dynamical behavior of virus prevalence would be determined by basic reproduction numbers when the ``saturation effect" for free virus particles appears. We point out that the incidence rate includes not only separable incidence rate but also non-separable incidence rate such as standard incidence and Beddington-DeAngelis functional response.
DOI : 10.22436/jnsa.010.10.07
Classification : 34K20, 34K25, 92D30
Keywords: Virus infection model, delay, global stability, incidence rate

Enatsu, Yoichi  1 ; Wang, Jinliang  2 ; Kuniya, Toshikazu  3

1 Department of Applied Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
2 School of Mathematical Science, Heilongjiang University, Harbin 150080, China
3 Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
@article{JNSA_2017_10_10_a6,
     author = {Enatsu, Yoichi  and Wang, Jinliang  and Kuniya, Toshikazu },
     title = {Impact of non-separable incidence rates on global dynamics of virus model with cell-mediated, humoral immune responses},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5201-5218},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.07/}
}
TY  - JOUR
AU  - Enatsu, Yoichi 
AU  - Wang, Jinliang 
AU  - Kuniya, Toshikazu 
TI  - Impact of non-separable incidence rates on global dynamics of virus model with cell-mediated, humoral immune responses
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5201
EP  - 5218
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.07/
DO  - 10.22436/jnsa.010.10.07
LA  - en
ID  - JNSA_2017_10_10_a6
ER  - 
%0 Journal Article
%A Enatsu, Yoichi 
%A Wang, Jinliang 
%A Kuniya, Toshikazu 
%T Impact of non-separable incidence rates on global dynamics of virus model with cell-mediated, humoral immune responses
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5201-5218
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.07/
%R 10.22436/jnsa.010.10.07
%G en
%F JNSA_2017_10_10_a6
Enatsu, Yoichi ; Wang, Jinliang ; Kuniya, Toshikazu . Impact of non-separable incidence rates on global dynamics of virus model with cell-mediated, humoral immune responses. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5201-5218. doi : 10.22436/jnsa.010.10.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.07/

[1] Arnaout, R.; Nowak, M.; D. Wodarz HIV-1 dynamics revisited: Biphasic decay by cytotoxic lymphocyte killing?, Proc. Roy. Soc. Lond. B., Volume 267 (2000), pp. 1347-1354

[2] Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency , J. Animal Ecol., Volume 44 (1975), pp. 331-340

[3] Bonhoeffer, S.; Coffin, J. M.; Nowak, M. A. Human immunodeficiency virus drug therapy and virus load, J. Virol., Volume 71 (1997), pp. 3275-3278

[4] Ciupe, M. S.; Bivort, B. L.; Bortz, D. M.; Nelson, P. W. Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models, Math. Biosci., Volume 200 (2006), pp. 1-27 | Zbl | DOI

[5] DeAngelis, D. L.; Goldstein, R. A.; O’Neill, R. V. A model for trophic interaction , Ecology, Volume 56 (1975), pp. 881-892 | DOI

[6] Boer, R. J. De; A. S. Perelson Towards a general function describing T cell proliferation, J. Theoret. Biol., Volume 175 (1995), pp. 567-576 | DOI

[7] Boer, R. J. De; Perelson, A. S. Target cell limited and immune control models of HIV infection: A comparison , J. Theoret. Biol., Volume 190 (1998), pp. 201-214 | DOI

[8] Hattaf, K.; Yousfi, N.; Tridane, A. Mathematical analysis of a virus dynamics model with general incidence rate and cure rate, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 1866-1872 | Zbl | DOI

[9] Huang, G.; Takeuchi, Y.; Ma, W. Lyapunov functionals for delay differential equations model of viral infections , SIAM Journal on Appl. Math., Volume 70 (2010), pp. 2693-2708 | DOI

[10] Ji, Y.; M. Zheng Dynamics analysis of a viral infection model with a general standard incidence rate, Abst. Appl. Anal., Volume 2014 (2014), pp. 1-6

[11] Kajiwara, T.; Sasaki, T.; Y. Takeuchi Construction of Lyapunov functionals for delay differential equations in virology and epidemiology, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 1802-1826 | DOI | Zbl

[12] A. Korobeinikov Global properties of basic virus dynamics models, Bull. Math. Biol., Volume 66 (2004), pp. 879-883 | DOI

[13] Y. Kuang Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993

[14] McCluskey, C. C.; Y. Yang Global stability of a diffusive virus dynamics model with general incidence function and time delay, Nonlinear Anal. Real World Appl., Volume 25 (2015), pp. 64-78 | Zbl | DOI

[15] Nakata, Y. Global dynamics of a cell mediated immunity in viral infection models with distributed delays, J. Math. Anal. Appl., Volume 375 (2011), pp. 14-27 | DOI | Zbl

[16] Nowak, M. A.; Bangham, C. R. M. Population dynamics of immune responses to persistent viruses, Science, Volume 272 (1996), pp. 74-79 | DOI

[17] Ouifki, R.; Witten, G. Stability analysis of a model for HIV infection with RTI and three intracellular delays, BioSystems, Volume 95 (2009), pp. 1-6 | DOI

[18] Peng, H.; Guo, Z. Global stability for a viral infection model with saturated incidence rate, Abst. Appl. Anal., Volume 2014 (2014), pp. 1-9

[19] Perelson, A. S.; Nelson, P. W. Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., Volume 41 (1999), pp. 3-44 | DOI

[20] Prüss, J.; Zacher, R.; R. Schnaubelt Global asymptotic stability of equilibria in models for virus dynamics, Math. Model. Nat. Phenom., Volume 3 (2008), pp. 126-142 | DOI

[21] Wang, J.-L.; Guo, M.; Liu, X.-N.; Zhao, Z. Threshold dynamics of HIV-1 virus model with cell-to-cell transmission, cellmediated immune responses and distributed delay, Appl. Math. Comput., Volume 291 (2016), pp. 149-161 | DOI

[22] Wang, T.; Hu., Z.-X.; Liao, F.; W. Ma Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Math. Comp. Simulation, Volume 89 (2013), pp. 13-22 | DOI

[23] Wang, J.-L.; Liu, S.-Q. The stability analysis of a general viral infection model with distributed delays and multi-staged infected progression, Commun. Nonlinear Sci. Numer. Simul., Volume 20 (2015), pp. 263-272 | Zbl | DOI

[24] Wang, J.-L.; Pang, J.-M.; Kuniya, T.; Enatsu, Y. Global threshold dynamics in a five-dimensional virus model with cellmediated, humoral immune responses and distributed delays, Appl. Math. Comput., Volume 241 (2014), pp. 298-316 | Zbl | DOI

[25] Wang, K.; Wang, W.; Pang, H.; Liu, X.-N. Complex dynamic behavior in a viral model with delayed immune response, Phys. D, Volume 226 (2007), pp. 197-208 | Zbl | DOI

[26] Wang, Z.-P.; Xu, R. Stability and Hopf bifurcation in a viral infection model with nonlinear incidence rate and delayed immune response, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 964-978 | Zbl | DOI

[27] Wang, S.; D. Zou Global stability of in-host viral models with humoral immunity and intracellular delays , Appl. Math. Model., Volume 36 (2012), pp. 1313-1322 | DOI | Zbl

[28] Yan, Y.-C.; Wang, W. Global stability of a five-dimensional model with immune responses and delay, Discrete Contin. Dyn. Syst. Ser. B, Volume 17 (2012), pp. 401-416 | Zbl

[29] Yuan, Z.-H.; X.-F. Zou Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays, Math. Biosci. Eng., Volume 10 (2013), pp. 483-498 | Zbl | DOI

[30] Zhu, H.; Luo, Y.; Chen, M. Stability and Hopf bifurcation of a HIV infection model with CTL-response delay, Comput. Math. Appl., Volume 62 (2011), pp. 3091-3102 | DOI

Cité par Sources :