Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5182-5200.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper focuses on the application of fractional backstepping control scheme for nonlinear fractional partial differential equation (FPDE). Two types of fractional derivatives are considered in this paper, Caputo and the Grünwald-Letnikov fractional derivatives. Therefore, obtaining highly accurate approximations for this derivative is of a great importance. Here, the discretized approach for the space variable is used to transform the FPDE into a system of fractional differential equations. The convergence of the closed loop system is guaranteed in the sense of Mittag-Leffler stability. An illustrative example is given to demonstrate the effectiveness of the proposed control scheme.
DOI : 10.22436/jnsa.010.10.06
Classification : 37B25, 26A33, 35R11
Keywords: Backstepping method, fractional Lyapunov function, fractional derivative, boundary control, fractional partial differential equation

Hanan, Ibtisam Kamil  1 ; Ahmad, Muhammad Zaini  2 ; Fadhel, Fadhel Subhi  3

1 Institute of Engineering Mathematics, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia;Department of Mathematics and Computer Applications, College of Science, Al-Nahrain University, P. O. Box 47077, Baghdad, Iraq
2 Institute of Engineering Mathematics, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Arau, Perlis, Malaysia
3 Department of Mathematics and Computer Applications, College of Science, Al-Nahrain University, P. O. Box 47077, Baghdad, Iraq
@article{JNSA_2017_10_10_a5,
     author = {Hanan, Ibtisam Kamil  and Ahmad, Muhammad Zaini  and Fadhel, Fadhel Subhi },
     title = {Nonlinear {Mittag-Leffler} stability of nonlinear fractional partial differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5182-5200},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/}
}
TY  - JOUR
AU  - Hanan, Ibtisam Kamil 
AU  - Ahmad, Muhammad Zaini 
AU  - Fadhel, Fadhel Subhi 
TI  - Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5182
EP  - 5200
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/
DO  - 10.22436/jnsa.010.10.06
LA  - en
ID  - JNSA_2017_10_10_a5
ER  - 
%0 Journal Article
%A Hanan, Ibtisam Kamil 
%A Ahmad, Muhammad Zaini 
%A Fadhel, Fadhel Subhi 
%T Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5182-5200
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/
%R 10.22436/jnsa.010.10.06
%G en
%F JNSA_2017_10_10_a5
Hanan, Ibtisam Kamil ; Ahmad, Muhammad Zaini ; Fadhel, Fadhel Subhi . Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5182-5200. doi : 10.22436/jnsa.010.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/

[1] M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 2670-2681 | Zbl | DOI

[2] Aguila-Camacho, N.; Duarte-Mermoud, M. A.; Gallegos, J. A. Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2951-2957 | DOI

[3] Alomari, A. K.; Awawdeh, F.; Tahat, N.; Ahmad, F. Bani; W. Shatanawi Multiple solutions for fractional differential equations: Analytic approach, Appl. Math. Comput., Volume 219 (2013), pp. 8893-8903 | DOI | Zbl

[4] Baleanu, D.; Machado, J. A. T.; Luo, A. C. Fractional dynamics and control, Springer, New York, 2011

[5] Burton, T. A. Fractional differential equations and Lyapunov functionals, Nonlinear Anal., Volume 74 (2011), pp. 5648-5662 | DOI | Zbl

[6] Dadras, S.; H. R. Momeni Passivity-based fractional-order integral sliding-mode control design for uncertain fractionalorder nonlinear systems, Mechatronics, Volume 23 (2013), pp. 880-887 | DOI

[7] Ding, D.-S.; Qi, D.-L.; Wang, Q. Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems, IET Control Theory Appl., Volume 9 (2015), pp. 681-690

[8] Farges, C.; Fadiga, L.; Sabatier, J. \(H_\infty\) analysis and control of commensurate fractional order systems, Mechatronics, Volume 23 (2013), pp. 772-780 | DOI

[9] Farges, C.; Moze, M.; Sabatier, J. Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica J. IFAC, Volume 46 (2010), pp. 1730-1734 | Zbl | DOI

[10] Lakshmikantham, V.; Leela, S.; M. Sambandham Lyapunov theory for fractional differential equations, Commun. Appl. Anal., Volume 12 (2008), pp. 365-376

[11] Lan, Y. H.; Gu, H. B.; Chen, C. X.; Zhou, Y.; Luo, Y. P. An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks, Neurocomputing, Volume 136 (2014), pp. 235-242 | DOI

[12] Lan, Y.-H.; Zhou, Y. LMI-based robust control of fractional-order uncertain linear systems, Comput. Math. Appl., Volume 62 (2011), pp. 1460-1471 | DOI | Zbl

[13] Li, Y.; Chen, Y.; I. Podlubny MittagLeffler stability of fractional order nonlinear dynamic systems, Automatica, Volume 45 (2009), pp. 1965-1969 | DOI

[14] Li, Y.; Chen, Y.-Q.; I. Podlubny Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., Volume 59 (2010), pp. 1810-1821 | Zbl | DOI

[15] Lu, J.-G.; Chen, Y.-Q.; Chen, W. Robust asymptotical stability of fractional-order linear systems with structured perturbations, Comput. Math. Appl., Volume 66 (2013), pp. 873-882 | DOI | Zbl

[16] Oldham, K. B.; Spanier, J. The Fractional Calculus, Academic Press, New York, 1974

[17] Padula, F.; Alcántara, S.; Vilanova, R.; Visioli, A. \(H_\infty\) control of fractional linear systems, Automatica, Volume 45 (2013), pp. 2276-2280

[18] Pan, I.; Das, S. Intelligent fractional order systems and control: an introduction, Springer, New York, 2012 | DOI | Zbl

[19] Petráš, I. Fractional-order nonlinear systems: modeling, analysis and simulation, Springer, New York, 2011 | Zbl

[20] Sabatier, J.; Agrawal, O. P.; Machado, J. A. T. Advances in fractional calculus, Springer, Dordrecht, 2007 | DOI

[21] Sheng, H.; Chen, Y.; Qiu, T. Fractional processes and fractional-order signal processing: techniques and applications, Springer, New York, 2011 | Zbl | DOI

[22] Shi, B.; Yuan, J.; Dong, C. Pseudo-state sliding mode control of fractional SISO nonlinear systems , Adv. Math. Phys., Volume 2013 (2013), pp. 1-7 | Zbl

[23] Sousa, E. How to approximate the fractional derivative of order \(1 < \alpha\leq 2\), Int. J. Bifurcation. Chaos, Volume 2012 (2012), pp. 1-13 | Zbl | DOI

[24] Takamatsu, T.; H. Ohmori Sliding Mode Controller Design Based on Backstepping Technique for Fractional Order System, SICE JCMSI, Volume 9 (2016), pp. 151-157 | DOI

[25] Tang, Y.; Zhang, X.; Zhang, D.; Zhao, G.; Guan, X. Fractional order sliding mode controller design for antilock braking systems, Neurocomputing, Volume 111 (2013), pp. 122-130 | DOI

[26] Trigeassou, J. C.; Maamri, N.; Oustaloup, A. Lyapunov Stability of Linear Fractional Systems: Part 1-Definition of Fractional Energy , ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2013 (2013), pp. 1-10 | DOI

[27] Trigeassou, J. C.; Maamri, N.; Oustaloup, A. Lyapunov Stability of Linear Fractional Systems: Part 2-Derivation of stability condition, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2013 (2013), pp. 1-10

[28] Trigeassou, J.-C.; Maamri, N.; Sabatier, J.; A. Oustaloup A Lyapunov approach to the stability of fractional differential equations , Signal Processing, Volume 91 (2011), pp. 437-445 | DOI

[29] Wang, J.; Lv, L.; Y. Zhou New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 2530-2538 | DOI

[30] Wen, X.; Wu, Z.; Lu, J. Stability analysis of a class of nonlinear fractional-order systems, IEEE Transactions on circuits and systems II: Express Briefs, Volume 55 (2008), pp. 1178-1182 | DOI

[31] Yu, J.; Hu, H.; Zhou, S.; X. Lin Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems , Automatica J. IFAC, Volume 49 (2013), pp. 1798-1803 | DOI | Zbl

[32] Yuan, Y. H.; Q. S. Sun Fractional-order embedding multiset canonical correlations with applications to multi-feature fusion and recognition, Neurocomputing, Volume 122 (2013), pp. 229-238 | DOI

[33] Zhou, X. F.; Hu, L. G.; Liu, S.; Jiang, W. Stability criterion for a class of nonlinear fractional differential systems, Appl. Math. Lett., Volume 28 (2014), pp. 25-29 | DOI

Cité par Sources :