Voir la notice de l'article provenant de la source International Scientific Research Publications
Hanan, Ibtisam Kamil  1 ; Ahmad, Muhammad Zaini  2 ; Fadhel, Fadhel Subhi  3
@article{JNSA_2017_10_10_a5, author = {Hanan, Ibtisam Kamil and Ahmad, Muhammad Zaini and Fadhel, Fadhel Subhi }, title = {Nonlinear {Mittag-Leffler} stability of nonlinear fractional partial differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {5182-5200}, publisher = {mathdoc}, volume = {10}, number = {10}, year = {2017}, doi = {10.22436/jnsa.010.10.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/} }
TY - JOUR AU - Hanan, Ibtisam Kamil AU - Ahmad, Muhammad Zaini AU - Fadhel, Fadhel Subhi TI - Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5182 EP - 5200 VL - 10 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/ DO - 10.22436/jnsa.010.10.06 LA - en ID - JNSA_2017_10_10_a5 ER -
%0 Journal Article %A Hanan, Ibtisam Kamil %A Ahmad, Muhammad Zaini %A Fadhel, Fadhel Subhi %T Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations %J Journal of nonlinear sciences and its applications %D 2017 %P 5182-5200 %V 10 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/ %R 10.22436/jnsa.010.10.06 %G en %F JNSA_2017_10_10_a5
Hanan, Ibtisam Kamil ; Ahmad, Muhammad Zaini ; Fadhel, Fadhel Subhi . Nonlinear Mittag-Leffler stability of nonlinear fractional partial differential equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5182-5200. doi : 10.22436/jnsa.010.10.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.06/
[1] Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 2670-2681 | Zbl | DOI
[2] Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2951-2957 | DOI
[3] Multiple solutions for fractional differential equations: Analytic approach, Appl. Math. Comput., Volume 219 (2013), pp. 8893-8903 | DOI | Zbl
[4] Fractional dynamics and control, Springer, New York, 2011
[5] Fractional differential equations and Lyapunov functionals, Nonlinear Anal., Volume 74 (2011), pp. 5648-5662 | DOI | Zbl
[6] Passivity-based fractional-order integral sliding-mode control design for uncertain fractionalorder nonlinear systems, Mechatronics, Volume 23 (2013), pp. 880-887 | DOI
[7] Non-linear Mittag-Leffler stabilisation of commensurate fractional-order non-linear systems, IET Control Theory Appl., Volume 9 (2015), pp. 681-690
[8] \(H_\infty\) analysis and control of commensurate fractional order systems, Mechatronics, Volume 23 (2013), pp. 772-780 | DOI
[9] Pseudo-state feedback stabilization of commensurate fractional order systems, Automatica J. IFAC, Volume 46 (2010), pp. 1730-1734 | Zbl | DOI
[10] Lyapunov theory for fractional differential equations, Commun. Appl. Anal., Volume 12 (2008), pp. 365-376
[11] An indirect Lyapunov approach to the observer-based robust control for fractional-order complex dynamic networks, Neurocomputing, Volume 136 (2014), pp. 235-242 | DOI
[12] LMI-based robust control of fractional-order uncertain linear systems, Comput. Math. Appl., Volume 62 (2011), pp. 1460-1471 | DOI | Zbl
[13] MittagLeffler stability of fractional order nonlinear dynamic systems, Automatica, Volume 45 (2009), pp. 1965-1969 | DOI
[14] Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., Volume 59 (2010), pp. 1810-1821 | Zbl | DOI
[15] Robust asymptotical stability of fractional-order linear systems with structured perturbations, Comput. Math. Appl., Volume 66 (2013), pp. 873-882 | DOI | Zbl
[16] The Fractional Calculus, Academic Press, New York, 1974
[17] \(H_\infty\) control of fractional linear systems, Automatica, Volume 45 (2013), pp. 2276-2280
[18] Intelligent fractional order systems and control: an introduction, Springer, New York, 2012 | DOI | Zbl
[19] Fractional-order nonlinear systems: modeling, analysis and simulation, Springer, New York, 2011 | Zbl
[20] Advances in fractional calculus, Springer, Dordrecht, 2007 | DOI
[21] Fractional processes and fractional-order signal processing: techniques and applications, Springer, New York, 2011 | Zbl | DOI
[22] Pseudo-state sliding mode control of fractional SISO nonlinear systems , Adv. Math. Phys., Volume 2013 (2013), pp. 1-7 | Zbl
[23] How to approximate the fractional derivative of order \(1 < \alpha\leq 2\), Int. J. Bifurcation. Chaos, Volume 2012 (2012), pp. 1-13 | Zbl | DOI
[24] Sliding Mode Controller Design Based on Backstepping Technique for Fractional Order System, SICE JCMSI, Volume 9 (2016), pp. 151-157 | DOI
[25] Fractional order sliding mode controller design for antilock braking systems, Neurocomputing, Volume 111 (2013), pp. 122-130 | DOI
[26] Lyapunov Stability of Linear Fractional Systems: Part 1-Definition of Fractional Energy , ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2013 (2013), pp. 1-10 | DOI
[27] Lyapunov Stability of Linear Fractional Systems: Part 2-Derivation of stability condition, ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 2013 (2013), pp. 1-10
[28] A Lyapunov approach to the stability of fractional differential equations , Signal Processing, Volume 91 (2011), pp. 437-445 | DOI
[29] New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 2530-2538 | DOI
[30] Stability analysis of a class of nonlinear fractional-order systems, IEEE Transactions on circuits and systems II: Express Briefs, Volume 55 (2008), pp. 1178-1182 | DOI
[31] Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems , Automatica J. IFAC, Volume 49 (2013), pp. 1798-1803 | DOI | Zbl
[32] Fractional-order embedding multiset canonical correlations with applications to multi-feature fusion and recognition, Neurocomputing, Volume 122 (2013), pp. 229-238 | DOI
[33] Stability criterion for a class of nonlinear fractional differential systems, Appl. Math. Lett., Volume 28 (2014), pp. 25-29 | DOI
Cité par Sources :