Voir la notice de l'article provenant de la source International Scientific Research Publications
Al-Refai, Mohammed  1 ; Baleanu, Dumitru 2
@article{JNSA_2017_10_10_a4, author = {Al-Refai, Mohammed and Baleanu, Dumitru}, title = {Estimates of higher order fractional derivatives at extreme points}, journal = {Journal of nonlinear sciences and its applications}, pages = {5174-5181}, publisher = {mathdoc}, volume = {10}, number = {10}, year = {2017}, doi = {10.22436/jnsa.010.10.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/} }
TY - JOUR AU - Al-Refai, Mohammed AU - Baleanu, Dumitru TI - Estimates of higher order fractional derivatives at extreme points JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5174 EP - 5181 VL - 10 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/ DO - 10.22436/jnsa.010.10.05 LA - en ID - JNSA_2017_10_10_a4 ER -
%0 Journal Article %A Al-Refai, Mohammed %A Baleanu, Dumitru %T Estimates of higher order fractional derivatives at extreme points %J Journal of nonlinear sciences and its applications %D 2017 %P 5174-5181 %V 10 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/ %R 10.22436/jnsa.010.10.05 %G en %F JNSA_2017_10_10_a4
Al-Refai, Mohammed ; Baleanu, Dumitru. Estimates of higher order fractional derivatives at extreme points. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5174-5181. doi : 10.22436/jnsa.010.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/
[1] On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems, J. King Saud Univ. Sci., Volume 28 (2016), pp. 103-110 | DOI
[2] A survey on existing results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., Volume 109 (2010), pp. 973-1033 | DOI
[3] Basic results on nonlinear eigenvalue problems with fractional order, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-12
[4] On the fractional derivative at extreme points, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012), pp. 1-5
[5] Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 483-498 | DOI | Zbl
[6] Maximum principle for the multi-term time-fractional diffusion equations with the Riemann- Liouville fractional derivatives, Appl. Math. Comput., Volume 257 (2015), pp. 40-51 | Zbl | DOI
[7] Analysis of fractional diffusion equations of distributed order: Maximum principles and its applications, Analysis, Volume 36 (2016), pp. 123-133 | DOI | Zbl
[8] Fractional Calculus: Models and Numerical Methods, World Scientific, World Scientific Publishing, Hackensack, 2012 | Zbl
[9] Asymptotic Integration and Stability for Differential Equations of Fractional Order, World Scientific Publishing, Hackensack, 2015
[10] Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006
[11] Fractional diffusion and wave propagation, Springer, Volume 2014 (2014), pp. 1-36
[12] Recent history of fractional calculus , Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1140-1153 | DOI | Zbl
[13] Fractional Differential Equations, Academic Press, San Diego, 1999
[14] Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands, 2007 | DOI
[15] Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Switzerland, 1993
[16] A finite difference method for a two-point boundary value problem with Caputo fractional derivative, IMA Journal of Numerical Analysis, Volume 35 (2014), pp. 698-721 | DOI | Zbl
[17] Positive solutions and monotone iterative sequences for a class of higher order boundary value problems of fractional order, J. Fract. Calc. Appl., Volume 4 (2013), pp. 147-159
[18] Existence of solutions for Riemann-Liouville fractional boundary value problem, Abstract and Applied Analysis, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-9
[19] Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Thermal Science, Volume 2016 (2016), pp. 1-13
[20] A new fractional operator of variablr order: application in the description of anomalous diffusion , Physica A: Statis. Mechanics Appl., Volume 481 (2017), pp. 276-283 | DOI
[21] New rheological models within local fractional derivative, Rom. Rep. Phys., Volume 2017 (2017), pp. 1-12
[22] Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations , Appl. Math. Comput., Volume 227 (2014), pp. 531-540 | DOI | Zbl
Cité par Sources :