Estimates of higher order fractional derivatives at extreme points
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5174-5181.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We extend the results concerning the fractional derivatives of a function at its extreme points to fractional derivatives of arbitrary order. We also give an estimate of the error and present two examples to illustrate the validity of the results. The presented results are valid for both Caputo and Riemann-Liouville fractional derivatives.
DOI : 10.22436/jnsa.010.10.05
Classification : 26A33
Keywords: Extreme points, higher order fractional derivatives, Caputo derivative, Riemann-Liouville derivative

Al-Refai, Mohammed  1 ; Baleanu, Dumitru 2

1 Department of Mathematical Sciences, United Arab Emirates University, P. O. Box 15551, Al Ain, UAE
2 Department of Mathematics and Computer Science, Cankaya University, 06530 Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania
@article{JNSA_2017_10_10_a4,
     author = {Al-Refai, Mohammed  and  Baleanu, Dumitru},
     title = {Estimates of higher order fractional derivatives at extreme points},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5174-5181},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/}
}
TY  - JOUR
AU  - Al-Refai, Mohammed 
AU  -  Baleanu, Dumitru
TI  - Estimates of higher order fractional derivatives at extreme points
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5174
EP  - 5181
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/
DO  - 10.22436/jnsa.010.10.05
LA  - en
ID  - JNSA_2017_10_10_a4
ER  - 
%0 Journal Article
%A Al-Refai, Mohammed 
%A  Baleanu, Dumitru
%T Estimates of higher order fractional derivatives at extreme points
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5174-5181
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/
%R 10.22436/jnsa.010.10.05
%G en
%F JNSA_2017_10_10_a4
Al-Refai, Mohammed ;  Baleanu, Dumitru. Estimates of higher order fractional derivatives at extreme points. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5174-5181. doi : 10.22436/jnsa.010.10.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.05/

[1] Abdulla, A. B.; Al-Refai, M.; Al-Rawashdeh, A. On the existence and uniqueness of solutions for a class of non-linear fractional boundary value problems, J. King Saud Univ. Sci., Volume 28 (2016), pp. 103-110 | DOI

[2] Agarwal, R. P.; Benchohra, M.; Hamani, S. A survey on existing results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., Volume 109 (2010), pp. 973-1033 | DOI

[3] M. Al-Refai Basic results on nonlinear eigenvalue problems with fractional order, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-12

[4] Al-Refai, M. On the fractional derivative at extreme points, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012), pp. 1-5

[5] Al-Refai, M.; Luchko, Yu. Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 483-498 | DOI | Zbl

[6] Al-Refai, M.; Yu. Luchko Maximum principle for the multi-term time-fractional diffusion equations with the Riemann- Liouville fractional derivatives, Appl. Math. Comput., Volume 257 (2015), pp. 40-51 | Zbl | DOI

[7] Al-Refai, M.; Luchko, Yu. Analysis of fractional diffusion equations of distributed order: Maximum principles and its applications, Analysis, Volume 36 (2016), pp. 123-133 | DOI | Zbl

[8] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J. Fractional Calculus: Models and Numerical Methods, World Scientific, World Scientific Publishing, Hackensack, 2012 | Zbl

[9] Baleanu, D.; Mustafa, O. Asymptotic Integration and Stability for Differential Equations of Fractional Order, World Scientific Publishing, Hackensack, 2015

[10] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006

[11] Luchko, Y. Fractional diffusion and wave propagation, Springer, Volume 2014 (2014), pp. 1-36

[12] Machado, J. T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus , Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1140-1153 | DOI | Zbl

[13] I. Podlubny Fractional Differential Equations, Academic Press, San Diego, 1999

[14] Sabatier, J.; Agarwal, O. P.; Machado, J. A. Tenreiro Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, Springer, Netherlands, 2007 | DOI

[15] Samko, S. G.; Kilbas, A. A.; O. I. Marichev Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Switzerland, 1993

[16] Stynes, M.; Gracia, J. L. A finite difference method for a two-point boundary value problem with Caputo fractional derivative, IMA Journal of Numerical Analysis, Volume 35 (2014), pp. 698-721 | DOI | Zbl

[17] Syam, M.; Al-Refai, M. Positive solutions and monotone iterative sequences for a class of higher order boundary value problems of fractional order, J. Fract. Calc. Appl., Volume 4 (2013), pp. 147-159

[18] Xie, W.; Xiao, J.; Luo, Z. Existence of solutions for Riemann-Liouville fractional boundary value problem, Abstract and Applied Analysis, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-9

[19] Yang, X.-J. Fractional derivatives of constant and variable orders applied to anomalous relaxation models in heat-transfer problems, Thermal Science, Volume 2016 (2016), pp. 1-13

[20] X. J. Yang A new fractional operator of variablr order: application in the description of anomalous diffusion , Physica A: Statis. Mechanics Appl., Volume 481 (2017), pp. 276-283 | DOI

[21] Yang, X. J.; Gao, F.; H. M. Srivastava New rheological models within local fractional derivative, Rom. Rep. Phys., Volume 2017 (2017), pp. 1-12

[22] Ye, H.; Liu, F.; Anh, V.; Turner, I. Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations , Appl. Math. Comput., Volume 227 (2014), pp. 531-540 | DOI | Zbl

Cité par Sources :