Voir la notice de l'article provenant de la source International Scientific Research Publications
Kim, Taekyun  1 ; Kim, Dae San  2 ; Jang, Gwan-Woo  3 ; Jang, Lee-Chae  4
@article{JNSA_2017_10_10_a1, author = {Kim, Taekyun and Kim, Dae San and Jang, Gwan-Woo and Jang, Lee-Chae }, title = {Degenerate ordered {Bell} numbers and polynomials associated with umbral calculus}, journal = {Journal of nonlinear sciences and its applications}, pages = {5142-5155}, publisher = {mathdoc}, volume = {10}, number = {10}, year = {2017}, doi = {10.22436/jnsa.010.10.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/} }
TY - JOUR AU - Kim, Taekyun AU - Kim, Dae San AU - Jang, Gwan-Woo AU - Jang, Lee-Chae TI - Degenerate ordered Bell numbers and polynomials associated with umbral calculus JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 5142 EP - 5155 VL - 10 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/ DO - 10.22436/jnsa.010.10.02 LA - en ID - JNSA_2017_10_10_a1 ER -
%0 Journal Article %A Kim, Taekyun %A Kim, Dae San %A Jang, Gwan-Woo %A Jang, Lee-Chae %T Degenerate ordered Bell numbers and polynomials associated with umbral calculus %J Journal of nonlinear sciences and its applications %D 2017 %P 5142-5155 %V 10 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/ %R 10.22436/jnsa.010.10.02 %G en %F JNSA_2017_10_10_a1
Kim, Taekyun ; Kim, Dae San ; Jang, Gwan-Woo ; Jang, Lee-Chae . Degenerate ordered Bell numbers and polynomials associated with umbral calculus. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5142-5155. doi : 10.22436/jnsa.010.10.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/
[1] Postulational bases for the umbral calculus, Amer. J. Math., Volume 62 (1940), pp. 717-724 | DOI | Zbl
[2] Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88 | Zbl
[3] Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing, Holland, 1974
[4] Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math., Volume 22 (2012), pp. 433-438
[5] On umbral calculus, Ricerche Mat., Volume 43 (1994), pp. 129-162
[6] Korobov polynomials of the first kind, Sb. Math., Volume 208 (2017), pp. 60-74 | DOI | Zbl
[7] Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys., Volume 21 (2014), pp. 36-45 | Zbl | DOI
[8] Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math., Volume 24 (2014), pp. 5-18 | Zbl
[9] The theory of the umbral calculus, J. Math. Anal. Appl., Volume 95 (1983), pp. 528-563 | DOI
[10] The umbral calculus, Academic Press, New York, 1984
[11] An introduction to the umbral calculus, Analysis, geometry and groups: a Riemann legacy volume, Hadronic Press, Palm Harbor, 1993
[12] The classical umbral calculus, SIAM J. Math. Anal., Volume 25 (1994), pp. 694-711 | DOI
Cité par Sources :