Degenerate ordered Bell numbers and polynomials associated with umbral calculus
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5142-5155.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study degenerate ordered Bell polynomials with the viewpoint of Carlitz's degenerate Bernoulli and Euler polynomials and derive by using umbral calculus some properties and new identities for the degenerate ordered Bell polynomials associated with special polynomials.
DOI : 10.22436/jnsa.010.10.02
Classification : 11B68, 11B83, 05A40
Keywords: Degenerate ordered Bell polynomial, umbral calculus, Euler polynomials

Kim, Taekyun  1 ; Kim, Dae San  2 ; Jang, Gwan-Woo  3 ; Jang, Lee-Chae  4

1 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin 300160, China;Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
2 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
3 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
4 Graduate School of Education, Konkuk University, Seoul 143-701, Republic of Korea
@article{JNSA_2017_10_10_a1,
     author = {Kim, Taekyun  and Kim, Dae San  and Jang, Gwan-Woo  and Jang, Lee-Chae },
     title = {Degenerate ordered {Bell} numbers and polynomials associated with umbral calculus},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {5142-5155},
     publisher = {mathdoc},
     volume = {10},
     number = {10},
     year = {2017},
     doi = {10.22436/jnsa.010.10.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/}
}
TY  - JOUR
AU  - Kim, Taekyun 
AU  - Kim, Dae San 
AU  - Jang, Gwan-Woo 
AU  - Jang, Lee-Chae 
TI  - Degenerate ordered Bell numbers and polynomials associated with umbral calculus
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 5142
EP  - 5155
VL  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/
DO  - 10.22436/jnsa.010.10.02
LA  - en
ID  - JNSA_2017_10_10_a1
ER  - 
%0 Journal Article
%A Kim, Taekyun 
%A Kim, Dae San 
%A Jang, Gwan-Woo 
%A Jang, Lee-Chae 
%T Degenerate ordered Bell numbers and polynomials associated with umbral calculus
%J Journal of nonlinear sciences and its applications
%D 2017
%P 5142-5155
%V 10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/
%R 10.22436/jnsa.010.10.02
%G en
%F JNSA_2017_10_10_a1
Kim, Taekyun ; Kim, Dae San ; Jang, Gwan-Woo ; Jang, Lee-Chae . Degenerate ordered Bell numbers and polynomials associated with umbral calculus. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 10, p. 5142-5155. doi : 10.22436/jnsa.010.10.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.10.02/

[1] E. T. Bell Postulational bases for the umbral calculus, Amer. J. Math., Volume 62 (1940), pp. 717-724 | DOI | Zbl

[2] L. Carlitz Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88 | Zbl

[3] L. Comtet Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel Publishing, Holland, 1974

[4] Dere, R.; Simsek, Y. Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math., Volume 22 (2012), pp. 433-438

[5] Crescenzo, A. Di; Rota, G.-C. On umbral calculus, Ricerche Mat., Volume 43 (1994), pp. 129-162

[6] Dolgiĭ, D. V.; Kim, D. S.; Kim, T. Korobov polynomials of the first kind, Sb. Math., Volume 208 (2017), pp. 60-74 | DOI | Zbl

[7] T. Kim Identities involving Laguerre polynomials derived from umbral calculus, Russ. J. Math. Phys., Volume 21 (2014), pp. 36-45 | Zbl | DOI

[8] Kim, D. S.; Kim, T.; Seo, J. J. Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math., Volume 24 (2014), pp. 5-18 | Zbl

[9] Roman, S. The theory of the umbral calculus, J. Math. Anal. Appl., Volume 95 (1983), pp. 528-563 | DOI

[10] S. Roman The umbral calculus, Academic Press, New York, 1984

[11] Rota, G. C.; Taylor, B. D. An introduction to the umbral calculus, Analysis, geometry and groups: a Riemann legacy volume, Hadronic Press, Palm Harbor, 1993

[12] Rota, G. C.; B. D. Taylor The classical umbral calculus, SIAM J. Math. Anal., Volume 25 (1994), pp. 694-711 | DOI

Cité par Sources :