A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4687-4694.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, for solving the general nonconvex multiobjective programming with both inequality and equality constraints, a modified constraint shifting homotopy is constructed, and the existence and global convergence of the smooth homotopy pathway is proven for any initial point in the almost Euclidean space under some mild conditions. The advantage of the newly proposed method requires that the initial point can be chosen much more conveniently, which needs to be only in the shifted feasible set not necessarily in the original feasible set. Meanwhile, the normal cone condition for proving the global convergence, which is much weaker than the existing interior method, need only be satisfied at the boundary of the shifted feasible set but not the original constraint set.
DOI : 10.22436/jnsa.010.09.11
Classification : 90C26, 65H20, 90-08
Keywords: Homotopy method, nonconvex programming, multiobjective programming, global convergence.

Zhu, Zhichuan  1 ; Yao, Yonghong  2

1 School of Statistics, Jilin University of Finance and Economics, Changchun, Jilin 130117, China;School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin 130024, China
2 School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin 130024, China
@article{JNSA_2017_10_9_a10,
     author = {Zhu, Zhichuan  and Yao, Yonghong },
     title = {A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4687-4694},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/}
}
TY  - JOUR
AU  - Zhu, Zhichuan 
AU  - Yao, Yonghong 
TI  - A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4687
EP  - 4694
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/
DO  - 10.22436/jnsa.010.09.11
LA  - en
ID  - JNSA_2017_10_9_a10
ER  - 
%0 Journal Article
%A Zhu, Zhichuan 
%A Yao, Yonghong 
%T A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4687-4694
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/
%R 10.22436/jnsa.010.09.11
%G en
%F JNSA_2017_10_9_a10
Zhu, Zhichuan ; Yao, Yonghong . A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4687-4694. doi : 10.22436/jnsa.010.09.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/

[1] Allgower, E. L.; K. Georg Numerical Continuation Methods: An Introduction, Springer, Berlin, 1990 | Zbl

[2] Antczak, T.; A. Pitea Parametric approach to multitime multiobjective fractional variational problems under \((F, \rho)\)- convexity, Optim. Control Appl. Meth., Volume 37 (2016), pp. 831-847 | Zbl | DOI

[3] Chow, S. N.; Mallet-Paret, J.; Yorke, J. A. Finding zeros of maps: homotopy methods that are constructive with probability one, Math. Comp., Volume 32 (1978), pp. 887-899 | DOI

[4] Isac, G.; Kosteva, M. M.; Wiecek, M. M. Multiple-objective appproximation of feasible but unsolvable linear complementarity problems, J. Optim. Theory Appl., Volume 86 (1995), pp. 389-405 | DOI | Zbl

[5] Jayswal, A.; Choudhury, S. An exact \(l_1\) exponential penalty function method for multiobjective optimization problems with exponential-type invexity, J. Oper. Res. Soc. China, Volume 2 (2014), pp. 75-91 | Zbl | DOI

[6] Kellogg, R. B.; Li, T. Y.; Yorke, J. A constructive proof the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., Volume 13 (1976), pp. 473-483 | Zbl | DOI

[7] Konno, H.; Kuno, T. Linear multiplicative programming, Math. Programming, Volume 56 (1992), pp. 51-64 | DOI

[8] Koopmans, T. C. Activity Analysis of Production and Allocation, Wiley, New York, 1951

[9] Kosterva, M. M.; M. M. Wiecek Linear complementarity problems and multiple objective programming, Math. Programming, Volume 60 (1993), pp. 349-359 | DOI

[10] Liu, Q. H.; Lin, Z. H. Homotopy interior point method of solving weak efficient solutions for multiobjective programming problems, Acta Math. Appl. Sin. Engl. Ser., Volume 23 (2000), pp. 188-195 | Zbl

[11] Lin, Z.-H.; Yu, B.; Feng, G.-C. A combined homotopy interior point method for convex nonlinear programming, Appl. Math. Comput., Volume 84 (1997), pp. 193-211 | DOI

[12] Lin, Z. H.; Zhu, D. L.; Sheng, Z. P. Finding a minimal efficient solution of a convex multiobjective program, J. Optim. Theory Appl., Volume 118 (2003), pp. 587-600 | DOI | Zbl

[13] V. Pareto Course d’Economic Politique , Librairie Droz, Switzerland, 1964

[14] Perez, V. M.; Renaud, J. E.; Watson, L. T. Homotopy curve tracking in approximate interior point optimization, Optim. Eng., Volume 10 (2009), pp. 91-108 | DOI | Zbl

[15] Pitea, A.; T. Antczak Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-20 | DOI | Zbl

[16] Pitea, A.; M. Postolache Duality theorems for a new class of multitime multiobjective variational problems, J. Global Optim., Volume 54 (2012), pp. 47-58 | Zbl | DOI

[17] Pitea, A.; Postolache, M. Minimization of vectors of curvilinear functionals on the second order jet bundle Necessary conditions, Optim. Lett., Volume 6 (2012), pp. 459-470 | DOI

[18] Pitea, A.; M. Postolache Minimization of vectors of curvilinear functionals on the second order jet bundle Sufficient efficiency conditions, Optim. Lett., Volume 6 (2012), pp. 1657-1669 | Zbl | DOI

[19] Qi, L.; Wei, Z.-X. On the constant positive linear dependence condition and its application to SQP methods, SIAM J. Optim., Volume 10 (2000), pp. 963-981 | Zbl | DOI

[20] Smale, S. A convergent process of price adjustment and global newton methods, J. Math. Econom., Volume 3 (1976), pp. 107-120 | DOI | Zbl

[21] Song, W.; Yao, G. M. Homotopy Method for a General Multiobjective Programming Problem, J. Optim. Theory Appl., Volume 138 (2008), pp. 139-153 | DOI

[22] Neumann, J. Von; Morgenstern, O. Theory of Games and Economic Behavior, Princeton University Press, New Jersey, 1944

[23] Yang, Y. H.; Lu, X. R.; Q. H. Liu Infeasible interior-point homotopy method for non-convex programming under normal cone condition , J. Jilin Univ. Sci., Volume 45 (2007), pp. 365-368 | Zbl

[24] Yang, L.; Yu, B.; Xu, Q. A constraint shifting homotopy method for general non-linear programming, Optimization, Volume 63 (2014), pp. 585-600 | Zbl | DOI

[25] Yu, B.; Shang, Y. Boundary moving combined homotopy method for nonconvex nonlinear programming, J. Math. Res. Expos., Volume 26 (2006), pp. 831-834 | Zbl

[26] Zhao, X.; Zhang, S. G.; Q. H. Liu Homotopy Interior-Point Method for a General Multiobjective Programming Problem, J. Appl. Math., Volume 2012 (2012), pp. 1-12 | Zbl

[27] Zhu, Z.-C.; Xiong, H.-J. A constraint shifting homotopy method for finding a minimal efficient solution of nonconvex multiobjective programming, Optim. Methods Softw., Volume 30 (2015), pp. 634-642 | Zbl | DOI

[28]

[29] Zhu, Z.-C.; Yu, B. A modified homotopy method for solving the principal-agent bilevel programming problem , Comput. Appl. Math., Volume 2016 (2016), pp. 1-26

[30] Zhu, Z.-C.; Yu, B. Globally convergent homotopy algorithm for solving the KKT systems to the principal agent bilevel programming, Optim. Methods Softw., Volume 32 (2017), pp. 69-85 | Zbl | DOI

[31] Zhu, Z.-C.; Yu, B.; Shang, Y.-F. A modified homotopy method for solving nonconvex fixed points problems, Fixed Point Theory, Volume 14 (2013), pp. 531-544 | Zbl

[32] Zhu, Z.-C.; Yu, B.; Yang, L. Globally convergent homotopy method for designing piecewise linear deterministic contractual function, J. Ind. Manag. Optim., Volume 10 (2014), pp. 717-741 | DOI | Zbl

[33] Zhu, Z.; Zhou, Z.; Liou, Y.-C.; Yao, Y.-H.; Y. Xing A globally convergent method for computing fixed point of self-mapping on general nonconvex set, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 1067-1078 | Zbl

Cité par Sources :