Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhu, Zhichuan  1 ; Yao, Yonghong  2
@article{JNSA_2017_10_9_a10, author = {Zhu, Zhichuan and Yao, Yonghong }, title = {A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming}, journal = {Journal of nonlinear sciences and its applications}, pages = {4687-4694}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/} }
TY - JOUR AU - Zhu, Zhichuan AU - Yao, Yonghong TI - A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4687 EP - 4694 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/ DO - 10.22436/jnsa.010.09.11 LA - en ID - JNSA_2017_10_9_a10 ER -
%0 Journal Article %A Zhu, Zhichuan %A Yao, Yonghong %T A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming %J Journal of nonlinear sciences and its applications %D 2017 %P 4687-4694 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/ %R 10.22436/jnsa.010.09.11 %G en %F JNSA_2017_10_9_a10
Zhu, Zhichuan ; Yao, Yonghong . A modified constraint shifting homotopy method for solving general nonlinear multiobjective programming. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4687-4694. doi : 10.22436/jnsa.010.09.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.11/
[1] Numerical Continuation Methods: An Introduction, Springer, Berlin, 1990 | Zbl
[2] Parametric approach to multitime multiobjective fractional variational problems under \((F, \rho)\)- convexity, Optim. Control Appl. Meth., Volume 37 (2016), pp. 831-847 | Zbl | DOI
[3] Finding zeros of maps: homotopy methods that are constructive with probability one, Math. Comp., Volume 32 (1978), pp. 887-899 | DOI
[4] Multiple-objective appproximation of feasible but unsolvable linear complementarity problems, J. Optim. Theory Appl., Volume 86 (1995), pp. 389-405 | DOI | Zbl
[5] An exact \(l_1\) exponential penalty function method for multiobjective optimization problems with exponential-type invexity, J. Oper. Res. Soc. China, Volume 2 (2014), pp. 75-91 | Zbl | DOI
[6] A constructive proof the Brouwer fixed-point theorem and computational results, SIAM J. Numer. Anal., Volume 13 (1976), pp. 473-483 | Zbl | DOI
[7] Linear multiplicative programming, Math. Programming, Volume 56 (1992), pp. 51-64 | DOI
[8] Activity Analysis of Production and Allocation, Wiley, New York, 1951
[9] Linear complementarity problems and multiple objective programming, Math. Programming, Volume 60 (1993), pp. 349-359 | DOI
[10] Homotopy interior point method of solving weak efficient solutions for multiobjective programming problems, Acta Math. Appl. Sin. Engl. Ser., Volume 23 (2000), pp. 188-195 | Zbl
[11] A combined homotopy interior point method for convex nonlinear programming, Appl. Math. Comput., Volume 84 (1997), pp. 193-211 | DOI
[12] Finding a minimal efficient solution of a convex multiobjective program, J. Optim. Theory Appl., Volume 118 (2003), pp. 587-600 | DOI | Zbl
[13] Course d’Economic Politique , Librairie Droz, Switzerland, 1964
[14] Homotopy curve tracking in approximate interior point optimization, Optim. Eng., Volume 10 (2009), pp. 91-108 | DOI | Zbl
[15] Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-20 | DOI | Zbl
[16] Duality theorems for a new class of multitime multiobjective variational problems, J. Global Optim., Volume 54 (2012), pp. 47-58 | Zbl | DOI
[17] Minimization of vectors of curvilinear functionals on the second order jet bundle Necessary conditions, Optim. Lett., Volume 6 (2012), pp. 459-470 | DOI
[18] Minimization of vectors of curvilinear functionals on the second order jet bundle Sufficient efficiency conditions, Optim. Lett., Volume 6 (2012), pp. 1657-1669 | Zbl | DOI
[19] On the constant positive linear dependence condition and its application to SQP methods, SIAM J. Optim., Volume 10 (2000), pp. 963-981 | Zbl | DOI
[20] A convergent process of price adjustment and global newton methods, J. Math. Econom., Volume 3 (1976), pp. 107-120 | DOI | Zbl
[21] Homotopy Method for a General Multiobjective Programming Problem, J. Optim. Theory Appl., Volume 138 (2008), pp. 139-153 | DOI
[22] Theory of Games and Economic Behavior, Princeton University Press, New Jersey, 1944
[23] Infeasible interior-point homotopy method for non-convex programming under normal cone condition , J. Jilin Univ. Sci., Volume 45 (2007), pp. 365-368 | Zbl
[24] A constraint shifting homotopy method for general non-linear programming, Optimization, Volume 63 (2014), pp. 585-600 | Zbl | DOI
[25] Boundary moving combined homotopy method for nonconvex nonlinear programming, J. Math. Res. Expos., Volume 26 (2006), pp. 831-834 | Zbl
[26] Homotopy Interior-Point Method for a General Multiobjective Programming Problem, J. Appl. Math., Volume 2012 (2012), pp. 1-12 | Zbl
[27] A constraint shifting homotopy method for finding a minimal efficient solution of nonconvex multiobjective programming, Optim. Methods Softw., Volume 30 (2015), pp. 634-642 | Zbl | DOI
[28]
[29] A modified homotopy method for solving the principal-agent bilevel programming problem , Comput. Appl. Math., Volume 2016 (2016), pp. 1-26
[30] Globally convergent homotopy algorithm for solving the KKT systems to the principal agent bilevel programming, Optim. Methods Softw., Volume 32 (2017), pp. 69-85 | Zbl | DOI
[31] A modified homotopy method for solving nonconvex fixed points problems, Fixed Point Theory, Volume 14 (2013), pp. 531-544 | Zbl
[32] Globally convergent homotopy method for designing piecewise linear deterministic contractual function, J. Ind. Manag. Optim., Volume 10 (2014), pp. 717-741 | DOI | Zbl
[33] A globally convergent method for computing fixed point of self-mapping on general nonconvex set, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 1067-1078 | Zbl
Cité par Sources :