Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhao, Yu  1 ; Li, Risong  1 ; Lu, Tianxiu  2 ; Jiang, Ru  1 ; Wang, Hongqing  1 ; Liang, Haihua  1
@article{JNSA_2017_10_9_a9, author = {Zhao, Yu and Li, Risong and Lu, Tianxiu and Jiang, Ru and Wang, Hongqing and Liang, Haihua }, title = {A quantitative approach to syndetic transitivity and topological ergodicity}, journal = {Journal of nonlinear sciences and its applications}, pages = {4680-4686}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/} }
TY - JOUR AU - Zhao, Yu AU - Li, Risong AU - Lu, Tianxiu AU - Jiang, Ru AU - Wang, Hongqing AU - Liang, Haihua TI - A quantitative approach to syndetic transitivity and topological ergodicity JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4680 EP - 4686 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/ DO - 10.22436/jnsa.010.09.10 LA - en ID - JNSA_2017_10_9_a9 ER -
%0 Journal Article %A Zhao, Yu %A Li, Risong %A Lu, Tianxiu %A Jiang, Ru %A Wang, Hongqing %A Liang, Haihua %T A quantitative approach to syndetic transitivity and topological ergodicity %J Journal of nonlinear sciences and its applications %D 2017 %P 4680-4686 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/ %R 10.22436/jnsa.010.09.10 %G en %F JNSA_2017_10_9_a9
Zhao, Yu ; Li, Risong ; Lu, Tianxiu ; Jiang, Ru ; Wang, Hongqing ; Liang, Haihua . A quantitative approach to syndetic transitivity and topological ergodicity. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4680-4686. doi : 10.22436/jnsa.010.09.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/
[1] Topological entropy , Trans. Amer. Math. Soc., Volume 114 (1965), pp. 309-319
[2] A note on the three versions of distributional chaos, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1993-1997 | DOI | Zbl
[3] A note on shadowing with chain transitivity, Commun. Nonlinear Sci. Numer. Simulat., Volume 17 (2012), pp. 2815-2823 | DOI | Zbl
[4] A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, Volume 45 (2012), pp. 753-758 | Zbl | DOI
[5] The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 819-825 | DOI
[6] A note on decay of correlation implies chaos in the sense of Devaney, Appl. Math. Model., Volume 39 (2015), pp. 6705-6710 | DOI
[7] A note on chaos and the shadowing property , Int. J. Gen. Syst., Volume 45 (2016), pp. 675-688 | DOI | Zbl
[8] Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces , Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-10
[9] Kato’s chaos in duopoly games , Chaos Solitons Fractals, Volume 84 (2016), pp. 69-72 | DOI | Zbl
[10] A note on chaos in product maps, Turkish J. Math., Volume 37 (2013), pp. 665-675 | DOI | Zbl
[11] Stronger forms of sensitivity for dynamical systems, Nonlinearity, Volume 20 (2007), pp. 2115-2126 | DOI
[12] A quantitative approach to transitivity and mixing, Chaos Solitons Fractals, Volume 40 (2009), pp. 958-965 | DOI | Zbl
[13] Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-12 | Zbl | DOI
[14] A remark on topological sequence entropy , Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 27 (2017), pp. 1-7 | DOI | Zbl
[15] Sensitivity and transitivity of fuzzified dynamical systems , Inform. Sci., Volume 396 (2017), pp. 14-23 | DOI
[16] On various definitions of shadowing with average error in tracing, Nonlinearity, Volume 29 (2016), pp. 1942-1972 | DOI | Zbl
[17] On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 2016 (2016), pp. 1-6 | DOI | Zbl
[18] F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., Volume 429 (2015), pp. 16-26 | DOI | Zbl
[19] On the large deviations of weaker types, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 2017 (2017), pp. 1-12 | Zbl | DOI
[20] Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal., Volume 8 (2017), pp. 199-210 | Zbl | DOI
[21] The chain properties and average shadowing property of iterated function systems, Qual. Theory Dyn. Syst., Volume 2016 (2016), pp. 1-9 | DOI
[22] Chaos in a topologically transitive system, Sci. China Ser. A, Volume 48 (2005), pp. 929-939 | DOI
Cité par Sources :