A quantitative approach to syndetic transitivity and topological ergodicity
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4680-4686.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we give new quantitative characteristics of degrees of syndetical transitivity and topological ergodicity for a given discrete dynamical system, which are nonnegative real numbers and are not more than $1$. For selfmaps of many compact metric spaces it is proved that a given selfmap is syndetically transitive if and only if its degree of syndetical transitivity is $1$, and that it is topologically ergodic if and only if its degree of topological ergodicity is one. Moreover, there exists a selfmap of $[0, 1]$ having all degrees positive.
DOI : 10.22436/jnsa.010.09.10
Classification : 37B10, 37C20, 37C50
Keywords: Sensitivity, syndetically sensitive, ergodically sensitive, multi-sensitive, cofinitely sensitive, Furstenberg families.

Zhao, Yu  1 ; Li, Risong  1 ; Lu, Tianxiu  2 ; Jiang, Ru  1 ; Wang, Hongqing  1 ; Liang, Haihua  1

1 School of Mathematic and Computer Science, Guangdong Ocean University, Zhanjiang, Guangdong, 524025, People's Republic of China
2 Department of Mathematics, Sichuan University of Science and Engineering, Zigong, Sichuan, 643000, People's Republic of China;Artificial Intelligence Key Laboratory of Sichuan Province, Zigong, Sichuan, 643000, People’s Republic of China;Bridge Non-destruction Detecting and Engineering Computing Key Laboratory of Sichuan Province, Zigong, Sichuan, 643000, People’s Republic of China
@article{JNSA_2017_10_9_a9,
     author = {Zhao, Yu  and Li, Risong  and Lu, Tianxiu  and Jiang, Ru  and Wang, Hongqing  and Liang, Haihua },
     title = {A quantitative approach to syndetic transitivity and topological ergodicity},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4680-4686},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/}
}
TY  - JOUR
AU  - Zhao, Yu 
AU  - Li, Risong 
AU  - Lu, Tianxiu 
AU  - Jiang, Ru 
AU  - Wang, Hongqing 
AU  - Liang, Haihua 
TI  - A quantitative approach to syndetic transitivity and topological ergodicity
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4680
EP  - 4686
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/
DO  - 10.22436/jnsa.010.09.10
LA  - en
ID  - JNSA_2017_10_9_a9
ER  - 
%0 Journal Article
%A Zhao, Yu 
%A Li, Risong 
%A Lu, Tianxiu 
%A Jiang, Ru 
%A Wang, Hongqing 
%A Liang, Haihua 
%T A quantitative approach to syndetic transitivity and topological ergodicity
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4680-4686
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/
%R 10.22436/jnsa.010.09.10
%G en
%F JNSA_2017_10_9_a9
Zhao, Yu ; Li, Risong ; Lu, Tianxiu ; Jiang, Ru ; Wang, Hongqing ; Liang, Haihua . A quantitative approach to syndetic transitivity and topological ergodicity. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4680-4686. doi : 10.22436/jnsa.010.09.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.10/

[1] Adler, R. L.; Konheim, A. G.; M. H. McAndrew Topological entropy , Trans. Amer. Math. Soc., Volume 114 (1965), pp. 309-319

[2] R. Li A note on the three versions of distributional chaos, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 1993-1997 | DOI | Zbl

[3] R. Li A note on shadowing with chain transitivity, Commun. Nonlinear Sci. Numer. Simulat., Volume 17 (2012), pp. 2815-2823 | DOI | Zbl

[4] R. Li A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, Volume 45 (2012), pp. 753-758 | Zbl | DOI

[5] R. Li The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 819-825 | DOI

[6] R. Li A note on decay of correlation implies chaos in the sense of Devaney, Appl. Math. Model., Volume 39 (2015), pp. 6705-6710 | DOI

[7] Li, R. A note on chaos and the shadowing property , Int. J. Gen. Syst., Volume 45 (2016), pp. 675-688 | DOI | Zbl

[8] Li, R.; Y. Shi Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces , Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-10

[9] Li, R.; Wang, H.-Q.; Y. Zhao Kato’s chaos in duopoly games , Chaos Solitons Fractals, Volume 84 (2016), pp. 69-72 | DOI | Zbl

[10] Li, R.; X.-L. Zhou A note on chaos in product maps, Turkish J. Math., Volume 37 (2013), pp. 665-675 | DOI | Zbl

[11] Moothathu, T. K. S. Stronger forms of sensitivity for dynamical systems, Nonlinearity, Volume 20 (2007), pp. 2115-2126 | DOI

[12] Snoha, L.; Špitalský, V. A quantitative approach to transitivity and mixing, Chaos Solitons Fractals, Volume 40 (2009), pp. 958-965 | DOI | Zbl

[13] Wu, X.-X. Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-12 | Zbl | DOI

[14] X.-X. Wu A remark on topological sequence entropy , Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 27 (2017), pp. 1-7 | DOI | Zbl

[15] Wu, X.-X.; G.-R. Chen Sensitivity and transitivity of fuzzified dynamical systems , Inform. Sci., Volume 396 (2017), pp. 14-23 | DOI

[16] Wu, X.-X.; Oprocha, P.; Chen, G.-R. On various definitions of shadowing with average error in tracing, Nonlinearity, Volume 29 (2016), pp. 1942-1972 | DOI | Zbl

[17] Wu, X.-X.; Wang, X. On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 2016 (2016), pp. 1-6 | DOI | Zbl

[18] Wu, X.-X.; Wang, J.-J.; G.-R. Chen F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., Volume 429 (2015), pp. 16-26 | DOI | Zbl

[19] Wu, X.-X.; Wang, X.; Chen, G.-R. On the large deviations of weaker types, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 2017 (2017), pp. 1-12 | Zbl | DOI

[20] Wu, X.-X.; Wang, L.-D.; Chen, G.-R. Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal., Volume 8 (2017), pp. 199-210 | Zbl | DOI

[21] Wu, X.-X.; Wang, L.-D.; Liang, J.-H. The chain properties and average shadowing property of iterated function systems, Qual. Theory Dyn. Syst., Volume 2016 (2016), pp. 1-9 | DOI

[22] J.-C. Xiong Chaos in a topologically transitive system, Sci. China Ser. A, Volume 48 (2005), pp. 929-939 | DOI

Cité par Sources :