Investigating dynamical behaviors of the difference equation $x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}$
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4662-4679.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, we investigate the dynamical behaviors of the rational difference equation%
$ x_{n+1}=\frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}, $
with arbitrary initial conditions, where $A,\ B$, and $C$ are arbitrary constants. A general solution is obtained. Asymptotic behavior and asymptotic stability of the equilibrium points are investigated. The existence of the periodic solutions is discussed. Numerical simulations are carried out to verify the analytical results.
DOI : 10.22436/jnsa.010.09.09
Classification : 34K13, 34K05, 34K20, 39A10
Keywords: Rational difference equations, asymptotic behavior, infinite products, local stability, periodicity, convergence.

Ghazel, M.  1 ; Elsayed, E. M.  2 ; Matouk, A. E.  1 ; Mousallam, A. M.  1

1 Mathematics Department, Faculty of Science, University of Hail, Hail 2440, Saudi Arabia
2 Mathematics Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia;Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
@article{JNSA_2017_10_9_a8,
     author = {Ghazel, M.  and Elsayed, E. M.  and Matouk, A. E.  and Mousallam, A. M. },
     title = {Investigating dynamical behaviors of the difference equation \(x_{n+1}= {\frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\)}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4662-4679},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/}
}
TY  - JOUR
AU  - Ghazel, M. 
AU  - Elsayed, E. M. 
AU  - Matouk, A. E. 
AU  - Mousallam, A. M. 
TI  - Investigating dynamical behaviors of the difference equation \(x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4662
EP  - 4679
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/
DO  - 10.22436/jnsa.010.09.09
LA  - en
ID  - JNSA_2017_10_9_a8
ER  - 
%0 Journal Article
%A Ghazel, M. 
%A Elsayed, E. M. 
%A Matouk, A. E. 
%A Mousallam, A. M. 
%T Investigating dynamical behaviors of the difference equation \(x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\)
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4662-4679
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/
%R 10.22436/jnsa.010.09.09
%G en
%F JNSA_2017_10_9_a8
Ghazel, M. ; Elsayed, E. M. ; Matouk, A. E. ; Mousallam, A. M. . Investigating dynamical behaviors of the difference equation \(x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\). Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4662-4679. doi : 10.22436/jnsa.010.09.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/

[1] Agiza, H. N.; Elsadany, A. A. Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl. Math. Comput., Volume 149 (2004), pp. 843-860 | DOI | Zbl

[2] Ahmed, E.; Elsadany, A. A.; T. Puu On Bertrand duopoly game with differentiated goods , Appl. Math. Comput., Volume 251 (2015), pp. 169-179 | Zbl | DOI

[3] Ahmed, E.; Hegazi, A. S. On dynamical multi-team and signaling games , Appl. Math. Comput., Volume 172 (2006), pp. 524-530 | Zbl | DOI

[4] Amleh, A. M.; Kirk, V.; Ladas, G. On the dynamics of \(x_{n+1} = \frac{a+bx_{n-1}}{ A+Bx_{n-2}}\) , Math. Sci. Res. Hot-Line, Volume 5 (2001), pp. 1-15

[5] S. S. Askar The impact of cost uncertainty on Cournot oligopoly game with concave demand function, Appl. Math. Comput., Volume 232 (2014), pp. 144-149 | DOI

[6] Askar, S. S.; Alshamrani, A. M.; Alnowibet, K. The arising of cooperation in Cournot duopoly games, Appl. Math. Comput., Volume 273 (2016), pp. 535-542 | DOI

[7] C. Cinar On the difference equation \(x_{n+1} = \frac{x_{n-1}}{ -1+x_nx_{n-1}}\) , Appl. Math. Comput., Volume 158 (2004), pp. 813-816 | DOI

[8] Cinar, C. On the positive solutions of the difference equation \(x_{n+1} = \frac{ax_{n-1}}{ 1+bx_nx_{n-1} }\), Appl. Math. Comput., Volume 156 (2004), pp. 587-590 | DOI

[9] Q. Din Qualitative nature of a discrete predator-prey system , Contemp. Methods Math. Phys. Gravit. (Online), Volume 1 (2015), pp. 27-42

[10] Elabbasy, E. M.; El-Metwally, H.; E. M. Elsayed Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J., Volume 53 (2007), pp. 89-100 | Zbl

[11] Elabbasy, E. M.; Elsadany, A. A.; Y. Zhang Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., Volume 228 (2014), pp. 184-194 | Zbl | DOI

[12] El-Dessoky, M. M.; E. M. Elsayed On the solutions and periodic nature of some systems of rational difference equations, J. Comput. Anal. Appl., Volume 18 (2015), pp. 206-218 | Zbl

[13] El-Metwally, H.; Elsayed, E. M. Form of solutions and periodicity for systems of difference equations, J. Comput. Anal. Appl., Volume 15 (2013), pp. 852-857

[14] El-Metwally, H.; Elsayed, E. M. Qualitative behavior of some rational difference equations, J. Comput. Anal. Appl., Volume 20 (2016), pp. 226-236 | Zbl

[15] El-Morshedy, H. A.; E. Liz Convergence to equilibria in discrete population models, J. Difference Equ. Appl., Volume 11 (2005), pp. 117-131 | DOI

[16] El-Morshedy, H. A.; Liz, E. Globally attracting fixed points in higher order discrete population models, J. Math. Biol., Volume 53 (2006), pp. 365-384 | Zbl | DOI

[17] Elsadany, A. A.; Agiza, H. N.; Elabbasy, E. M. Complex dynamics and chaos control of heterogeneous quadropoly game, Appl. Math. Comput., Volume 219 (2013), pp. 11110-11118 | DOI | Zbl

[18] Elsadany, A. A.; Matouk, A. E. Dynamic Cournot duopoly game with delay, J. Complex Syst., Volume 2014 (2014), pp. 1-7

[19] Elsayed, E. M. Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-17 | Zbl

[20] E. M. Elsayed Solutions of rational difference systems of order two , Math. Comput. Modelling, Volume 55 (2012), pp. 378-384 | DOI

[21] E. M. Elsayed On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath., Volume 7 (2014), pp. 1-26 | DOI

[22] E. M. Elsayed On a max type recursive sequence of order three, Miskolc Math. Notes, Volume 17 (2016), pp. 837-859 | Zbl | DOI

[23] Elsayed, E. M.; A. M. Ahmed Dynamics of a three-dimensional systems of rational difference equations, Math. Methods Appl. Sci., Volume 39 (2011), pp. 1026-1038 | Zbl | DOI

[24] Elsayed, E. M.; Alghamdi, A. Dynamics and global stability of higher order nonlinear difference equation , J. Comput. Anal. Appl., Volume 21 (2016), pp. 493-503 | Zbl

[25] Elsayed, E. M.; Ibrahim, T. F. Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1361-1390 | DOI | Zbl

[26] Elsayed, E. M.; T. F. Ibrahim Solutions and periodicity of a rational recursive sequences of order five, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 95-112 | DOI | Zbl

[27] Elsayed, E. M.; Mansour, M.; M. M. El-Dessoky Solutions of fractional systems of difference equations, Ars Combin., Volume 110 (2013), pp. 469-479

[28] Y. Halim Global character of systems of rational difference equations, Electron. J. Math. Anal. Appl., Volume 3 (2015), pp. 204-214

[29] Hassan, S. S.; Chatterjee, E. Dynamics of the equation \(z_{n+1} = \frac{\alpha+\beta z_n}{ A+z_{n-1}}\) in the complex plane, Cogent Math., Volume 2 (2015), pp. 1-12 | DOI

[30] Jana, D.; Elsayed, E. M. Interplay between strong Allee effect, harvesting and hydra effect of a single population discrete-time system, Int. J. Biomath., Volume 9 (2016), pp. 1-25 | DOI | Zbl

[31] Karatas, R.; Cinar, C.; Simsek, D. On positive solutions of the difference equation \(x_{n+1} = \frac {x_{n-5}}{ 1+x_{n-2}x_{n-5}}\) , Int. J. Contemp. Math. Sci., Volume 1 (2006), pp. 494-500

[32] Khan, A. Q.; Din, Q.; Qureshi, M. N.; T. F. Ibrahim Global behavior of an anti-competitive system of fourth-order rational difference equations, Comput. Ecol. Softw., Volume 4 (2014), pp. 35-46

[33] Kocic, V. L.; G. Ladas Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993 | DOI

[34] Matouk, A. E.; Elsadany, A. A.; Ahmed, E.; Agiza, H. N. Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization, Commun. Nonlinear Sci. Numer. Simul., Volume 27 (2015), pp. 153-167 | DOI

[35] Tollu, D.; Yazlik, Y.; Taskara, N. The solutions of four Riccati difference equations associated with Fibonacci numbers, Balkan J. Math., Volume 2 (2014), pp. 163-172

[36] Touafek, N.; E. M. Elsayed On a second order rational systems of difference equations, Hokkaido Math. J., Volume 44 (2015), pp. 29-45 | DOI

[37] Yazlik, Y.; Elsayed, E. M.; Taskara, N. On the behaviour of the solutions of difference equation systems, J. Comput. Anal. Appl., Volume 16 (2014), pp. 932-941

[38] Zhang, D.; Huang, J.; Wang, L.-Y.; W.-Q. Ji Global behavior of a nonlinear difference equation with applications , Open J. Discrete Math., Volume 2 (2012), pp. 78-81 | DOI

[39] Zhang, Q.; Zhang, W.; Liu, J.; Y. Shao On a fuzzy logistic dierence equation, WSEAS Trans. Math., Volume 13 (2014), pp. 282-290

Cité par Sources :