Voir la notice de l'article provenant de la source International Scientific Research Publications
$ x_{n+1}=\frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}, $ |
Ghazel, M.  1 ; Elsayed, E. M.  2 ; Matouk, A. E.  1 ; Mousallam, A. M.  1
@article{JNSA_2017_10_9_a8, author = {Ghazel, M. and Elsayed, E. M. and Matouk, A. E. and Mousallam, A. M. }, title = {Investigating dynamical behaviors of the difference equation \(x_{n+1}= {\frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\)}}, journal = {Journal of nonlinear sciences and its applications}, pages = {4662-4679}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/} }
TY - JOUR AU - Ghazel, M. AU - Elsayed, E. M. AU - Matouk, A. E. AU - Mousallam, A. M. TI - Investigating dynamical behaviors of the difference equation \(x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\) JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4662 EP - 4679 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/ DO - 10.22436/jnsa.010.09.09 LA - en ID - JNSA_2017_10_9_a8 ER -
%0 Journal Article %A Ghazel, M. %A Elsayed, E. M. %A Matouk, A. E. %A Mousallam, A. M. %T Investigating dynamical behaviors of the difference equation \(x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\) %J Journal of nonlinear sciences and its applications %D 2017 %P 4662-4679 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/ %R 10.22436/jnsa.010.09.09 %G en %F JNSA_2017_10_9_a8
Ghazel, M. ; Elsayed, E. M. ; Matouk, A. E. ; Mousallam, A. M. . Investigating dynamical behaviors of the difference equation \(x_{n+1}= \frac{Cx_{n-5}}{A+Bx_{n-2}x_{n-5}}\). Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4662-4679. doi : 10.22436/jnsa.010.09.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.09/
[1] Chaotic dynamics in nonlinear duopoly game with heterogeneous players, Appl. Math. Comput., Volume 149 (2004), pp. 843-860 | DOI | Zbl
[2] On Bertrand duopoly game with differentiated goods , Appl. Math. Comput., Volume 251 (2015), pp. 169-179 | Zbl | DOI
[3] On dynamical multi-team and signaling games , Appl. Math. Comput., Volume 172 (2006), pp. 524-530 | Zbl | DOI
[4] On the dynamics of \(x_{n+1} = \frac{a+bx_{n-1}}{ A+Bx_{n-2}}\) , Math. Sci. Res. Hot-Line, Volume 5 (2001), pp. 1-15
[5] The impact of cost uncertainty on Cournot oligopoly game with concave demand function, Appl. Math. Comput., Volume 232 (2014), pp. 144-149 | DOI
[6] The arising of cooperation in Cournot duopoly games, Appl. Math. Comput., Volume 273 (2016), pp. 535-542 | DOI
[7] On the difference equation \(x_{n+1} = \frac{x_{n-1}}{ -1+x_nx_{n-1}}\) , Appl. Math. Comput., Volume 158 (2004), pp. 813-816 | DOI
[8] On the positive solutions of the difference equation \(x_{n+1} = \frac{ax_{n-1}}{ 1+bx_nx_{n-1} }\), Appl. Math. Comput., Volume 156 (2004), pp. 587-590 | DOI
[9] Qualitative nature of a discrete predator-prey system , Contemp. Methods Math. Phys. Gravit. (Online), Volume 1 (2015), pp. 27-42
[10] Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J., Volume 53 (2007), pp. 89-100 | Zbl
[11] Bifurcation analysis and chaos in a discrete reduced Lorenz system, Appl. Math. Comput., Volume 228 (2014), pp. 184-194 | Zbl | DOI
[12] On the solutions and periodic nature of some systems of rational difference equations, J. Comput. Anal. Appl., Volume 18 (2015), pp. 206-218 | Zbl
[13] Form of solutions and periodicity for systems of difference equations, J. Comput. Anal. Appl., Volume 15 (2013), pp. 852-857
[14] Qualitative behavior of some rational difference equations, J. Comput. Anal. Appl., Volume 20 (2016), pp. 226-236 | Zbl
[15] Convergence to equilibria in discrete population models, J. Difference Equ. Appl., Volume 11 (2005), pp. 117-131 | DOI
[16] Globally attracting fixed points in higher order discrete population models, J. Math. Biol., Volume 53 (2006), pp. 365-384 | Zbl | DOI
[17] Complex dynamics and chaos control of heterogeneous quadropoly game, Appl. Math. Comput., Volume 219 (2013), pp. 11110-11118 | DOI | Zbl
[18] Dynamic Cournot duopoly game with delay, J. Complex Syst., Volume 2014 (2014), pp. 1-7
[19] Solution and attractivity for a rational recursive sequence, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-17 | Zbl
[20] Solutions of rational difference systems of order two , Math. Comput. Modelling, Volume 55 (2012), pp. 378-384 | DOI
[21] On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath., Volume 7 (2014), pp. 1-26 | DOI
[22] On a max type recursive sequence of order three, Miskolc Math. Notes, Volume 17 (2016), pp. 837-859 | Zbl | DOI
[23] Dynamics of a three-dimensional systems of rational difference equations, Math. Methods Appl. Sci., Volume 39 (2011), pp. 1026-1038 | Zbl | DOI
[24] Dynamics and global stability of higher order nonlinear difference equation , J. Comput. Anal. Appl., Volume 21 (2016), pp. 493-503 | Zbl
[25] Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., Volume 44 (2015), pp. 1361-1390 | DOI | Zbl
[26] Solutions and periodicity of a rational recursive sequences of order five, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 95-112 | DOI | Zbl
[27] Solutions of fractional systems of difference equations, Ars Combin., Volume 110 (2013), pp. 469-479
[28] Global character of systems of rational difference equations, Electron. J. Math. Anal. Appl., Volume 3 (2015), pp. 204-214
[29] Dynamics of the equation \(z_{n+1} = \frac{\alpha+\beta z_n}{ A+z_{n-1}}\) in the complex plane, Cogent Math., Volume 2 (2015), pp. 1-12 | DOI
[30] Interplay between strong Allee effect, harvesting and hydra effect of a single population discrete-time system, Int. J. Biomath., Volume 9 (2016), pp. 1-25 | DOI | Zbl
[31] On positive solutions of the difference equation \(x_{n+1} = \frac {x_{n-5}}{ 1+x_{n-2}x_{n-5}}\) , Int. J. Contemp. Math. Sci., Volume 1 (2006), pp. 494-500
[32] Global behavior of an anti-competitive system of fourth-order rational difference equations, Comput. Ecol. Softw., Volume 4 (2014), pp. 35-46
[33] Global behavior of nonlinear difference equations of higher order with applications, Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1993 | DOI
[34] Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization, Commun. Nonlinear Sci. Numer. Simul., Volume 27 (2015), pp. 153-167 | DOI
[35] The solutions of four Riccati difference equations associated with Fibonacci numbers, Balkan J. Math., Volume 2 (2014), pp. 163-172
[36] On a second order rational systems of difference equations, Hokkaido Math. J., Volume 44 (2015), pp. 29-45 | DOI
[37] On the behaviour of the solutions of difference equation systems, J. Comput. Anal. Appl., Volume 16 (2014), pp. 932-941
[38] Global behavior of a nonlinear difference equation with applications , Open J. Discrete Math., Volume 2 (2012), pp. 78-81 | DOI
[39] On a fuzzy logistic dierence equation, WSEAS Trans. Math., Volume 13 (2014), pp. 282-290
Cité par Sources :