Voir la notice de l'article provenant de la source International Scientific Research Publications
${x_{n + 1}} = \max \{ \frac{A}{{{x_n}}},\,\frac{A}{{{x_{n - 1}}}},\,{x_{n - 2}}\} ,\quad n \in {N_0},$ |
Wang, Changyou  1 ; Jing, Xiaotong  2 ; Hu, Xiaohong  2 ; Li, Rui  3
@article{JNSA_2017_10_9_a7, author = {Wang, Changyou and Jing, Xiaotong and Hu, Xiaohong and Li, Rui }, title = {On the periodicity of a max-type rational difference equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {4648-4661}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/} }
TY - JOUR AU - Wang, Changyou AU - Jing, Xiaotong AU - Hu, Xiaohong AU - Li, Rui TI - On the periodicity of a max-type rational difference equation JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4648 EP - 4661 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/ DO - 10.22436/jnsa.010.09.08 LA - en ID - JNSA_2017_10_9_a7 ER -
%0 Journal Article %A Wang, Changyou %A Jing, Xiaotong %A Hu, Xiaohong %A Li, Rui %T On the periodicity of a max-type rational difference equation %J Journal of nonlinear sciences and its applications %D 2017 %P 4648-4661 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/ %R 10.22436/jnsa.010.09.08 %G en %F JNSA_2017_10_9_a7
Wang, Changyou ; Jing, Xiaotong ; Hu, Xiaohong ; Li, Rui . On the periodicity of a max-type rational difference equation. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4648-4661. doi : 10.22436/jnsa.010.09.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/
[1] On the periodicity of solutions of max-type difference equation , Math. Methods Appl. Sci., Volume 38 (2015), pp. 3295-3307 | DOI | Zbl
[2] On the max-type equation \(x_{n+1} = max\{\frac{A_n}{x_n} , x_{n-1}\}\) , Ars Combin., Volume 95 (2010), pp. 187-192
[3] On the max-type equation \(x_{n+1} = max\{\frac{A}{x_n} , x_{n-2}\}\), Nonlinear Anal., Volume 71 (2009), pp. 910-922 | DOI
[4] On the global attractivity of a max-type difference equation , Discrete Dyn. Nat. Soc., Volume 2009 (2009), pp. 1-5 | Zbl
[5] Max-type system of difference equations with positive two-periodic sequences, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2541-2553 | Zbl | DOI
[6] On the max-type difference equation \(x_{n+1} = max\{\frac{A}{x_n} , x_{n-3}\}\) , Discrete Dyn. Nat. Soc., Volume 2010 (2010), pp. 1-13
[7] Asymptotic behavior results for solutions to some nonlinear difference equations, J. Math. Anal. Appl., Volume 430 (2015), pp. 614-632 | DOI
[8] Interplay between strong Allee effect, harvesting and hydra effect of a single population discrete-time system, Int. J. Biomath., Volume 9 (2016), pp. 1-25 | DOI | Zbl
[9] Homoclinic solutions for a second order difference equation with p-Laplacian , Appl. Math. Comput., Volume 247 (2014), pp. 1113-1121 | Zbl | DOI
[10] Global attractivity in a class of higher-order nonlinear difference equation , Acta Math. Sci. Ser. B Engl. Ed., Volume 25 (2005), pp. 59-66 | DOI
[11] Global attractivity of a family of nonautonomous max-type difference equations, Appl. Math. Comput., Volume 218 (2012), pp. 6297-6303 | DOI | Zbl
[12] A positive finite-difference model in the computational simulation of complex biological film models, J. Difference Equ. Appl., Volume 20 (2014), pp. 548-569 | DOI | Zbl
[13] Approximative solutions to difference equations of neutral type, Appl. Math. Comput., Volume 268 (2015), pp. 763-774 | DOI
[14] A reciprocal difference equation with maximum, Comput. Math. Appl., Volume 43 (2002), pp. 1021-1026 | DOI
[15] Some problems in the theory of differential equations with deviating argument, (Russian) Uspehi Mat. Nauk, Volume 32 (1977), pp. 173-202
[16] An introduction to the theory of numbers, Fifth edition, John Wiley & Sons, Inc., New York, 1991
[17] On a max type recurrence relation with periodic coefficients, J. Differ. Equ. Appl., Volume 10 (2004), pp. 329-338 | DOI | Zbl
[18] Population and community ecology: principles and methods, Gordon and Breach Science Publishers, Inc., New York, 1974 | Zbl
[19] Automatic regulation and control, (Russian) Nauka, Moscow, 1966
[20] Dynamics of the max-type difference equation \(x_{n+1} = max\{\frac{A}{x_n} , x_{n-k}\}\) , J. Comput. Anal. Appl., Volume 14 (2012), pp. 856-861 | Zbl
[21] Stability and periodic character of a rational third order difference equation , Chaos Solitons Fractals, Volume 39 (2009), pp. 1203-1209 | Zbl | DOI
[22] On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl., Volume 376 (2011), pp. 317-328 | Zbl
[23] On a symmetric system of max-type difference equations, Appl. Math. Comput., Volume 219 (2013), pp. 8407-8412 | Zbl | DOI
[24] Global behavior of the max-type difference equation \(x_n = max \{\frac{1}{x_{n-m}} , \frac{A_n}{x_{n-r}}\}\) , Appl. Math. Comput., Volume 248 (2014), pp. 687-692 | Zbl | DOI
[25] Eventually periodic solutions of a max-type equation, Math. Comput. Modelling, Volume 57 (2013), pp. 992-996 | DOI
Cité par Sources :