On the periodicity of a max-type rational difference equation
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4648-4661.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper shows that every well-defined solution of the following max-type difference equation
${x_{n + 1}} = \max \{ \frac{A}{{{x_n}}},\,\frac{A}{{{x_{n - 1}}}},\,{x_{n - 2}}\} ,\quad n \in {N_0},$
where $A \in R$ and the initial conditions ${x_{ - 2}},\,{x_{ - 1}},\,{x_0}$ are arbitrary non-zero real numbers is eventually periodic with period three by using new iteration method for the more general nonlinear difference equations and inequality skills as well as the mathematical induction. Our main results considerably improve results appearing in the literature.
DOI : 10.22436/jnsa.010.09.08
Classification : 39A10
Keywords: Max-type, difference equation, positive solution, periodic solution.

Wang, Changyou  1 ; Jing, Xiaotong  2 ; Hu, Xiaohong  2 ; Li, Rui  3

1 School of Applied Mathematics, Chengdu University of Information Technology, Chengdu, Sichuan 610225, P. R. China;College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
2 College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
3 College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
@article{JNSA_2017_10_9_a7,
     author = {Wang, Changyou  and Jing, Xiaotong  and Hu, Xiaohong  and Li, Rui },
     title = {On the periodicity of a max-type rational difference equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4648-4661},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/}
}
TY  - JOUR
AU  - Wang, Changyou 
AU  - Jing, Xiaotong 
AU  - Hu, Xiaohong 
AU  - Li, Rui 
TI  - On the periodicity of a max-type rational difference equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4648
EP  - 4661
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/
DO  - 10.22436/jnsa.010.09.08
LA  - en
ID  - JNSA_2017_10_9_a7
ER  - 
%0 Journal Article
%A Wang, Changyou 
%A Jing, Xiaotong 
%A Hu, Xiaohong 
%A Li, Rui 
%T On the periodicity of a max-type rational difference equation
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4648-4661
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/
%R 10.22436/jnsa.010.09.08
%G en
%F JNSA_2017_10_9_a7
Wang, Changyou ; Jing, Xiaotong ; Hu, Xiaohong ; Li, Rui . On the periodicity of a max-type rational difference equation. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4648-4661. doi : 10.22436/jnsa.010.09.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.08/

[1] M. M. El-Dessoky On the periodicity of solutions of max-type difference equation , Math. Methods Appl. Sci., Volume 38 (2015), pp. 3295-3307 | DOI | Zbl

[2] Elsayed, E. M.; Iričanin, B.; Stević, S. On the max-type equation \(x_{n+1} = max\{\frac{A_n}{x_n} , x_{n-1}\}\) , Ars Combin., Volume 95 (2010), pp. 187-192

[3] Elsayed, E. M.; Stević, S. On the max-type equation \(x_{n+1} = max\{\frac{A}{x_n} , x_{n-2}\}\), Nonlinear Anal., Volume 71 (2009), pp. 910-922 | DOI

[4] Gelişken, A.; C. Çinar On the global attractivity of a max-type difference equation , Discrete Dyn. Nat. Soc., Volume 2009 (2009), pp. 1-5 | Zbl

[5] Ibrahim, T. F.; Touafek, N. Max-type system of difference equations with positive two-periodic sequences, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2541-2553 | Zbl | DOI

[6] Iričanin, B. D.; E. M. Elsayed On the max-type difference equation \(x_{n+1} = max\{\frac{A}{x_n} , x_{n-3}\}\) , Discrete Dyn. Nat. Soc., Volume 2010 (2010), pp. 1-13

[7] Jamieson, W. T.; O. Merino Asymptotic behavior results for solutions to some nonlinear difference equations, J. Math. Anal. Appl., Volume 430 (2015), pp. 614-632 | DOI

[8] Jana, D.; Elsayed, E. M. Interplay between strong Allee effect, harvesting and hydra effect of a single population discrete-time system, Int. J. Biomath., Volume 9 (2016), pp. 1-25 | DOI | Zbl

[9] L.-J. Kong Homoclinic solutions for a second order difference equation with p-Laplacian , Appl. Math. Comput., Volume 247 (2014), pp. 1113-1121 | Zbl | DOI

[10] Li, W.-T.; Zhang, Y.-H.; Su, Y.-H. Global attractivity in a class of higher-order nonlinear difference equation , Acta Math. Sci. Ser. B Engl. Ed., Volume 25 (2005), pp. 59-66 | DOI

[11] Liu, W.-P.; Stević, S. Global attractivity of a family of nonautonomous max-type difference equations, Appl. Math. Comput., Volume 218 (2012), pp. 6297-6303 | DOI | Zbl

[12] Macías-Díaz, J. E. A positive finite-difference model in the computational simulation of complex biological film models, J. Difference Equ. Appl., Volume 20 (2014), pp. 548-569 | DOI | Zbl

[13] J. Migda Approximative solutions to difference equations of neutral type, Appl. Math. Comput., Volume 268 (2015), pp. 763-774 | DOI

[14] Mishev, D. P.; Patula, W. T.; H. D. Voulov A reciprocal difference equation with maximum, Comput. Math. Appl., Volume 43 (2002), pp. 1021-1026 | DOI

[15] Myškis, A. D. Some problems in the theory of differential equations with deviating argument, (Russian) Uspehi Mat. Nauk, Volume 32 (1977), pp. 173-202

[16] Niven, I.; Zuckerman, H. S.; H. L. Montgomery An introduction to the theory of numbers, Fifth edition, John Wiley & Sons, Inc., New York, 1991

[17] Patula, W. T.; Voulov, H. D. On a max type recurrence relation with periodic coefficients, J. Differ. Equ. Appl., Volume 10 (2004), pp. 329-338 | DOI | Zbl

[18] Pielou, E. C. Population and community ecology: principles and methods, Gordon and Breach Science Publishers, Inc., New York, 1974 | Zbl

[19] Popov, E. P. Automatic regulation and control, (Russian) Nauka, Moscow, 1966

[20] Qin, B.; Sun, T.-X.; H.-J. Xi Dynamics of the max-type difference equation \(x_{n+1} = max\{\frac{A}{x_n} , x_{n-k}\}\) , J. Comput. Anal. Appl., Volume 14 (2012), pp. 856-861 | Zbl

[21] Shojaei, M.; Saadati, R.; H. Adibi Stability and periodic character of a rational third order difference equation , Chaos Solitons Fractals, Volume 39 (2009), pp. 1203-1209 | Zbl | DOI

[22] S. Stević On a nonlinear generalized max-type difference equation, J. Math. Anal. Appl., Volume 376 (2011), pp. 317-328 | Zbl

[23] Stević, S. On a symmetric system of max-type difference equations, Appl. Math. Comput., Volume 219 (2013), pp. 8407-8412 | Zbl | DOI

[24] Sun, T.-X.; He, Q.-L.; Wu, X.; H.-J. Xi Global behavior of the max-type difference equation \(x_n = max \{\frac{1}{x_{n-m}} , \frac{A_n}{x_{n-r}}\}\) , Appl. Math. Comput., Volume 248 (2014), pp. 687-692 | Zbl | DOI

[25] Xiao, Q.; Shi, Q.-H. Eventually periodic solutions of a max-type equation, Math. Comput. Modelling, Volume 57 (2013), pp. 992-996 | DOI

Cité par Sources :