Voir la notice de l'article provenant de la source International Scientific Research Publications
Acar, Nese Isler  1 ; Dascioglu, Aysegul  2
@article{JNSA_2017_10_9_a6, author = {Acar, Nese Isler and Dascioglu, Aysegul }, title = {A {Bernstein} polynomial approach for solution of nonlinear integral equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {4638-4647}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/} }
TY - JOUR AU - Acar, Nese Isler AU - Dascioglu, Aysegul TI - A Bernstein polynomial approach for solution of nonlinear integral equations JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4638 EP - 4647 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/ DO - 10.22436/jnsa.010.09.07 LA - en ID - JNSA_2017_10_9_a6 ER -
%0 Journal Article %A Acar, Nese Isler %A Dascioglu, Aysegul %T A Bernstein polynomial approach for solution of nonlinear integral equations %J Journal of nonlinear sciences and its applications %D 2017 %P 4638-4647 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/ %R 10.22436/jnsa.010.09.07 %G en %F JNSA_2017_10_9_a6
Acar, Nese Isler ; Dascioglu, Aysegul . A Bernstein polynomial approach for solution of nonlinear integral equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4638-4647. doi : 10.22436/jnsa.010.09.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/
[1] Iterative methods for a fourth order boundary value problem, J. Comput. Appl. Math., Volume 10 (1984), pp. 203-217 | DOI
[2] Generalized quasilinearization method for nonlinear functional differential equations, J. Appl. Math. Stochastic Anal., Volume 16 (2003), pp. 33-43 | DOI
[3] Bernstein collocation method for solving nonlinear differential equations , Math. Comput. Appl., Volume 18 (2013), pp. 293-300 | DOI
[4] Bernstein collocation method for solving nonlinear Fredholm-Volterra integrodifferential equations in the most general form, J. Appl. Math., Volume 2014 (2014), pp. 1-8
[5] Modified quasilinearization technique for the solution of boundary-value problems for ordinary differential equations, J. Optimization Theory Appl., Volume 3 (1969), pp. 227-242 | DOI | Zbl
[6] Quasilinearization and nonlinear boundary-value problems, Modern Analytic and Computional Methods in Science and Mathematics, American Elsevier Publishing Co., Inc., New York, 1965
[7] Quasilinearization for functional differential equations with retardation and anticipation, Nonlinear Anal., Volume 70 (2009), pp. 1763-1775 | Zbl | DOI
[8] Algorithms for polynomials in Bernstein form , Comput. Aided Geom. Design, Volume 5 (1988), pp. 1-26 | DOI
[9] A collocation method for Lane-Emden Type equations in terms of generalized Bernstein polynomials, Pioneer J. Math. Math. Sci., Volume 12 (2014), pp. 81-97
[10] Bernstein polynomials, On-Line Geometric Modeling Notes , Visualization and Graphics Research Group, Department of Computer Science, University of California, Davis (2000), pp. 1-13
[11] Quasilinearization and invariant imbedding, First edition, Academic Press, New York, 1968
[12] Bernstein polynomials, Second edition, Chelsea Publishing Co., New York, 1986
[13] Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 93-100 | Zbl | DOI
[14] Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Comm., Volume 141 (2001), pp. 268-281 | Zbl | DOI
[15] Quadratically converging iterative schemes for nonlinear Volterra integral equations and an application, J. Appl. Math. Stochastic Anal., Volume 10 (1997), pp. 169-178 | Zbl | DOI
[16] Interpolation and approximation by polynomials, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer-Verlag, New York, 2003
[17] Piecewise quasilinearization techniques for singular boundary-value problems , Comput. Phys. Comm., Volume 158 (2004), pp. 12-25 | Zbl | DOI
[18] An extension of method of quasilinearization for integro-differential equations, Int. J. Pure Appl. Math., Volume 54 (2009), pp. 27-37 | Zbl
Cité par Sources :