A Bernstein polynomial approach for solution of nonlinear integral equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4638-4647.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this study, a collocation method based on the generalized Bernstein polynomials is derivated for solving nonlinear Fredholm-Volterra integral equations (FVIEs) in the most general form via the quasilinearization technique. Moreover, quadratic convergence and error estimate of the proposed method is analyzed. Some examples are also presented to show the accuracy and applicability of the method. keywords
DOI : 10.22436/jnsa.010.09.07
Classification : 45A05, 45G10, 65L60
Keywords: Bernstein polynomial approach, nonlinear integral equations, quasilinearization technique, collocation method.

Acar, Nese Isler  1 ; Dascioglu, Aysegul  2

1 Department of Mathematics, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Burdur, Turkey
2 Department of Mathematics, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
@article{JNSA_2017_10_9_a6,
     author = {Acar, Nese Isler  and Dascioglu, Aysegul },
     title = {A {Bernstein} polynomial approach for solution of nonlinear integral equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4638-4647},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/}
}
TY  - JOUR
AU  - Acar, Nese Isler 
AU  - Dascioglu, Aysegul 
TI  - A Bernstein polynomial approach for solution of nonlinear integral equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4638
EP  - 4647
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/
DO  - 10.22436/jnsa.010.09.07
LA  - en
ID  - JNSA_2017_10_9_a6
ER  - 
%0 Journal Article
%A Acar, Nese Isler 
%A Dascioglu, Aysegul 
%T A Bernstein polynomial approach for solution of nonlinear integral equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4638-4647
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/
%R 10.22436/jnsa.010.09.07
%G en
%F JNSA_2017_10_9_a6
Acar, Nese Isler ; Dascioglu, Aysegul . A Bernstein polynomial approach for solution of nonlinear integral equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4638-4647. doi : 10.22436/jnsa.010.09.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.07/

[1] Agarwal, R. P.; Chow, Y. M. Iterative methods for a fourth order boundary value problem, J. Comput. Appl. Math., Volume 10 (1984), pp. 203-217 | DOI

[2] Ahmad, B.; Khan, R. Ali; S. Sivasundaram Generalized quasilinearization method for nonlinear functional differential equations, J. Appl. Math. Stochastic Anal., Volume 16 (2003), pp. 33-43 | DOI

[3] Dascioglu, A. Akyuz; Isler, N. Bernstein collocation method for solving nonlinear differential equations , Math. Comput. Appl., Volume 18 (2013), pp. 293-300 | DOI

[4] Akyüz-Daşcıoğlu, A.; Acar, N. Işler; Güler, C. Bernstein collocation method for solving nonlinear Fredholm-Volterra integrodifferential equations in the most general form, J. Appl. Math., Volume 2014 (2014), pp. 1-8

[5] Baird, A. C.; Jr. Modified quasilinearization technique for the solution of boundary-value problems for ordinary differential equations, J. Optimization Theory Appl., Volume 3 (1969), pp. 227-242 | DOI | Zbl

[6] Bellman, R. E.; Kalaba, R. E. Quasilinearization and nonlinear boundary-value problems, Modern Analytic and Computional Methods in Science and Mathematics, American Elsevier Publishing Co., Inc., New York, 1965

[7] Drici, Z.; McRae, F. A.; J. V. Devi Quasilinearization for functional differential equations with retardation and anticipation, Nonlinear Anal., Volume 70 (2009), pp. 1763-1775 | Zbl | DOI

[8] Farouki, R. T.; V. T. Rajan Algorithms for polynomials in Bernstein form , Comput. Aided Geom. Design, Volume 5 (1988), pp. 1-26 | DOI

[9] Acar, N. İşler; Akyüz-Daşcıoğlu, A. A collocation method for Lane-Emden Type equations in terms of generalized Bernstein polynomials, Pioneer J. Math. Math. Sci., Volume 12 (2014), pp. 81-97

[10] Joy, K. I. Bernstein polynomials, On-Line Geometric Modeling Notes , Visualization and Graphics Research Group, Department of Computer Science, University of California, Davis (2000), pp. 1-13

[11] Lee, E. S. Quasilinearization and invariant imbedding, First edition, Academic Press, New York, 1968

[12] G. G. Lorentz Bernstein polynomials, Second edition, Chelsea Publishing Co., New York, 1986

[13] Maleknejad, K.; Najafi, E. Numerical solution of nonlinear Volterra integral equations using the idea of quasilinearization, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 93-100 | Zbl | DOI

[14] Mandelzweig, V. B.; Tabakin, F. Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs, Comput. Phys. Comm., Volume 141 (2001), pp. 268-281 | Zbl | DOI

[15] S. G. Pandit Quadratically converging iterative schemes for nonlinear Volterra integral equations and an application, J. Appl. Math. Stochastic Anal., Volume 10 (1997), pp. 169-178 | Zbl | DOI

[16] Phillips, M. G. Interpolation and approximation by polynomials, CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, Springer-Verlag, New York, 2003

[17] J. I. Ramos Piecewise quasilinearization techniques for singular boundary-value problems , Comput. Phys. Comm., Volume 158 (2004), pp. 12-25 | Zbl | DOI

[18] Wang, P.-G.; Wu, Y.-H.; Wiwatanapaphee, B. An extension of method of quasilinearization for integro-differential equations, Int. J. Pure Appl. Math., Volume 54 (2009), pp. 27-37 | Zbl

Cité par Sources :