Voir la notice de l'article provenant de la source International Scientific Research Publications
Hussain, Saqib  1 ; Alamri, Mohammed Ali  2 ; Darus, Maslina  2
@article{JNSA_2017_10_9_a5, author = {Hussain, Saqib and Alamri, Mohammed Ali and Darus, Maslina }, title = {On a new class of \((j, {i)\)-Symmetric} function on conic regions}, journal = {Journal of nonlinear sciences and its applications}, pages = {4628-4637}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/} }
TY - JOUR AU - Hussain, Saqib AU - Alamri, Mohammed Ali AU - Darus, Maslina TI - On a new class of \((j, i)\)-Symmetric function on conic regions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4628 EP - 4637 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/ DO - 10.22436/jnsa.010.09.06 LA - en ID - JNSA_2017_10_9_a5 ER -
%0 Journal Article %A Hussain, Saqib %A Alamri, Mohammed Ali %A Darus, Maslina %T On a new class of \((j, i)\)-Symmetric function on conic regions %J Journal of nonlinear sciences and its applications %D 2017 %P 4628-4637 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/ %R 10.22436/jnsa.010.09.06 %G en %F JNSA_2017_10_9_a5
Hussain, Saqib ; Alamri, Mohammed Ali ; Darus, Maslina . On a new class of \((j, i)\)-Symmetric function on conic regions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4628-4637. doi : 10.22436/jnsa.010.09.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/
[1] Conic regions and symmetric points, Int. J. Pure. Appl. Math., Volume 97 (2014), pp. 273-285
[2] A note on coefficient inequalities for (j, i)-symmetrical functions with conic regions, Bull. Int. Math. Virtual Inst., Volume 6 (2016), pp. 77-87 | Zbl
[3] Open problems on univalent and multivalent functions, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 1035-1050 | DOI
[4] Some extremal problems for certain families of analytic functions, I,, Ann. Polon. Math., Volume 28 (1973), pp. 297-326 | DOI | Zbl
[5] Coefficient estimates in subclasses of the Carathodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), Volume 74 (2005), pp. 149-161 | Zbl
[6] Conic regions and k-uniform convexity , Continued fractions and geometric function theory (CONFUN), Trondheim, (1997), J. Comput. Appl. Math., Volume 105 (1999), pp. 327-336 | Zbl | DOI
[7] Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., Volume 45 (2000), pp. 645-658
[8] A certain subclass of Janowski type functions associated with k-symmetric points, Commun. Korean Math. Soc., Volume 28 (2013), pp. 143-154 | DOI | Zbl
[9] On (j, k)-symmetrical functions, Math. Bohem., Volume 120 (1995), pp. 13-28
[10] Some classes of k-uniformly functions with bounded radius rotation, Appl. Math. Inf. Sci., Volume 8 (2014), pp. 527-533
[11] On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., Volume 62 (2011), pp. 2209-2217 | DOI | Zbl
[12] A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Volume 22 (2006), pp. 27-31 | Zbl
Cité par Sources :