On a new class of $(j, i)$-Symmetric function on conic regions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4628-4637.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, a new class of functions is defined using the concepts of $(j, i)$-symmetric functions and Janowski functions in conic regions. Certain interesting coefficient inequalities are discussed.
DOI : 10.22436/jnsa.010.09.06
Classification : 30C45, 30C50
Keywords: Analytic functions, subordination, conic domain, symmetric functions.

Hussain, Saqib  1 ; Alamri, Mohammed Ali  2 ; Darus, Maslina  2

1 COMSATS Institute of Information Technology, Abbotabad, Pakistan
2 School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia , 43600, Bangi, Selangor, Malaysia
@article{JNSA_2017_10_9_a5,
     author = {Hussain, Saqib  and Alamri, Mohammed Ali  and Darus, Maslina },
     title = {On a new class of \((j, {i)\)-Symmetric} function on conic regions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4628-4637},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/}
}
TY  - JOUR
AU  - Hussain, Saqib 
AU  - Alamri, Mohammed Ali 
AU  - Darus, Maslina 
TI  - On a new class of \((j, i)\)-Symmetric function on conic regions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4628
EP  - 4637
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/
DO  - 10.22436/jnsa.010.09.06
LA  - en
ID  - JNSA_2017_10_9_a5
ER  - 
%0 Journal Article
%A Hussain, Saqib 
%A Alamri, Mohammed Ali 
%A Darus, Maslina 
%T On a new class of \((j, i)\)-Symmetric function on conic regions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4628-4637
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/
%R 10.22436/jnsa.010.09.06
%G en
%F JNSA_2017_10_9_a5
Hussain, Saqib ; Alamri, Mohammed Ali ; Darus, Maslina . On a new class of \((j, i)\)-Symmetric function on conic regions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4628-4637. doi : 10.22436/jnsa.010.09.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.06/

[1] Sarari, F. S. M. Al; Latha, S. Conic regions and symmetric points, Int. J. Pure. Appl. Math., Volume 97 (2014), pp. 273-285

[2] Sarari, F. S. M. Al; Latha, S. A note on coefficient inequalities for (j, i)-symmetrical functions with conic regions, Bull. Int. Math. Virtual Inst., Volume 6 (2016), pp. 77-87 | Zbl

[3] Goodman, A. W. Open problems on univalent and multivalent functions, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 1035-1050 | DOI

[4] W. Janowski Some extremal problems for certain families of analytic functions, I,, Ann. Polon. Math., Volume 28 (1973), pp. 297-326 | DOI | Zbl

[5] Kanas, S. Coefficient estimates in subclasses of the Carathodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), Volume 74 (2005), pp. 149-161 | Zbl

[6] Kanas, S.; A.Wiśniowska Conic regions and k-uniform convexity , Continued fractions and geometric function theory (CONFUN), Trondheim, (1997), J. Comput. Appl. Math., Volume 105 (1999), pp. 327-336 | Zbl | DOI

[7] Kanas, S.; A.Wiśniowska Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., Volume 45 (2000), pp. 645-658

[8] Kwon, O.; Sim, Y.-J. A certain subclass of Janowski type functions associated with k-symmetric points, Commun. Korean Math. Soc., Volume 28 (2013), pp. 143-154 | DOI | Zbl

[9] Liczberski, P.; J. Poubiński On (j, k)-symmetrical functions, Math. Bohem., Volume 120 (1995), pp. 13-28

[10] Noor, K. I.; Fayyaz, R.; Noor, M. A. Some classes of k-uniformly functions with bounded radius rotation, Appl. Math. Inf. Sci., Volume 8 (2014), pp. 527-533

[11] Noor, K. I.; S. N. Malik On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., Volume 62 (2011), pp. 2209-2217 | DOI | Zbl

[12] Polatoğlu, Y.; Bolcal, M.; Şen, A.; E. Yavuz A study on the generalization of Janowski functions in the unit disc, Acta Math. Acad. Paedagog. Nyházi. (N.S.), Volume 22 (2006), pp. 27-31 | Zbl

Cité par Sources :