Voir la notice de l'article provenant de la source International Scientific Research Publications
Zheng, Lai-Yun  1 ; Zhang, Qi-Min  2
@article{JNSA_2017_10_9_a3, author = {Zheng, Lai-Yun and Zhang, Qi-Min }, title = {Convergence of numerical solutions for a class of stochastic age-dependent capital system with fractional {Brownian} motion}, journal = {Journal of nonlinear sciences and its applications}, pages = {4597-4610}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.04/} }
TY - JOUR AU - Zheng, Lai-Yun AU - Zhang, Qi-Min TI - Convergence of numerical solutions for a class of stochastic age-dependent capital system with fractional Brownian motion JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4597 EP - 4610 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.04/ DO - 10.22436/jnsa.010.09.04 LA - en ID - JNSA_2017_10_9_a3 ER -
%0 Journal Article %A Zheng, Lai-Yun %A Zhang, Qi-Min %T Convergence of numerical solutions for a class of stochastic age-dependent capital system with fractional Brownian motion %J Journal of nonlinear sciences and its applications %D 2017 %P 4597-4610 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.04/ %R 10.22436/jnsa.010.09.04 %G en %F JNSA_2017_10_9_a3
Zheng, Lai-Yun ; Zhang, Qi-Min . Convergence of numerical solutions for a class of stochastic age-dependent capital system with fractional Brownian motion. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4597-4610. doi : 10.22436/jnsa.010.09.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.04/
[1] Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study, J. Stat. Softw., Volume 5 (2000), pp. 1-53
[2] Convergence analysis of semi-implicit Euler methods for solving stochastic age-dependent capital system with variable delays and random jump magnitudes , Math. Probl. Eng., Volume 2014 (2014), pp. 1-12
[3] Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise, Stochastic Process. Appl., Volume 115 (2005), pp. 1357-1383 | Zbl | DOI
[4] Anticipation effects of technological progress on capital accumulation: a vintage capital approach, J. Econom. Theory, Volume 126 (2006), pp. 143-164 | DOI | Zbl
[5] Vladimir, Capital accumulation under technological progress and learning: a vintage capital approach , Eur. J. Oper. Res., Volume 172 (2006), pp. 293-310 | DOI
[6] The optimal economic lifetime of vintage capital in the presence of operating costs, technological progress, and learning , J. Econom. Dynam. Control, Volume 32 (2008), pp. 3032-3053 | Zbl | DOI
[7] Time-changed geometric fractional Brownian motion and option pricing with transaction costs, Phys. A, Volume 391 (2012), pp. 3971-3977 | DOI
[8] Generalized BSDEs driven by fractional Brownian motion, Statist. Probab. Lett., Volume 83 (2013), pp. 805-811 | Zbl | DOI
[9] On a stochastic heat equation with first order fractional noises and applications to finance, J. Math. Anal. Appl., Volume 396 (2012), pp. 656-669 | DOI | Zbl
[10] Numerical solution of stochastic differential equations, Applications of Mathematics (New York), Springer-Verlag, Berlin, 1992 | DOI
[11] Numerical analysis for stochastic age-dependent population equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 1884-1893 | DOI | Zbl
[12] Split-step \(\theta\)-methods for stochastic age-dependent population equations with Markovian switching, Nonlinear Anal. Real World Appl., Volume 13 (2012), pp. 1334-1345 | Zbl | DOI
[13] Convergence of numerical solutions to stochastic age-structured population equations with diffusions and Markovian switching, Appl. Math. Comput., Volume 216 (2010), pp. 744-752 | Zbl | DOI
[14] A note on the use of fractional Brownian motion for financial modeling, Econ. Model., Volume 30 (2013), pp. 30-35 | DOI
[15] Continuous time Black-Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime, Phys. A, Volume 391 (2012), pp. 750-759 | DOI
[16] Pricing currency options in a fractional Brownian motion with jumps, Econ. Model., Volume 27 (2010), pp. 935-942 | DOI
[17] Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm, Phys. A, Volume 391 (2012), pp. 6418-6431 | DOI
[18] Exponential stability of numerical solutions to a stochastic age-structured population system with diffusion, J. Comput. Appl. Math., Volume 220 (2008), pp. 22-33 | DOI | Zbl
[19] Numerical analysis for stochastic age-dependent population equations, Appl. Math. Comput., Volume 169 (2005), pp. 278-294 | DOI
[20] Strong convergence of split-step backward Euler method for stochastic age-dependent capital system with Markovian switching, Appl. Math. Comput., Volume 235 (2014), pp. 439-453 | DOI | Zbl
[21] Exponential stability of numerical solutions for a class of stochastic age-dependent capital system with Poisson jumps , J. Comput. Appl. Math., Volume 235 (2011), pp. 3369-3377 | DOI | Zbl
[22] Convergence of numerical solutions for a class of stochastic age-dependent capital system with random jump magnitudes, Appl. Math. Comput., Volume 219 (2013), pp. 7297-7305 | Zbl | DOI
Cité par Sources :