Voir la notice de l'article provenant de la source International Scientific Research Publications
Piri, Hossein  1 ; Rahrovi, Samira  1 ; Marasi, Hamidreza  2 ; Kumam, Poom  3
@article{JNSA_2017_10_9_a1, author = {Piri, Hossein and Rahrovi, Samira and Marasi, Hamidreza and Kumam, Poom }, title = {A fixed point theorem for {F-Khan-contractions} on complete metric spaces and application to integral equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {4564-4573}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/} }
TY - JOUR AU - Piri, Hossein AU - Rahrovi, Samira AU - Marasi, Hamidreza AU - Kumam, Poom TI - A fixed point theorem for F-Khan-contractions on complete metric spaces and application to integral equations JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4564 EP - 4573 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/ DO - 10.22436/jnsa.010.09.02 LA - en ID - JNSA_2017_10_9_a1 ER -
%0 Journal Article %A Piri, Hossein %A Rahrovi, Samira %A Marasi, Hamidreza %A Kumam, Poom %T A fixed point theorem for F-Khan-contractions on complete metric spaces and application to integral equations %J Journal of nonlinear sciences and its applications %D 2017 %P 4564-4573 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/ %R 10.22436/jnsa.010.09.02 %G en %F JNSA_2017_10_9_a1
Piri, Hossein ; Rahrovi, Samira ; Marasi, Hamidreza ; Kumam, Poom . A fixed point theorem for F-Khan-contractions on complete metric spaces and application to integral equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4564-4573. doi : 10.22436/jnsa.010.09.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/
[1] Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, Volume 28 (2014), pp. 715-722 | DOI | Zbl
[2] Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-13 | Zbl
[3] A Fixed Point Theorem for Generalized F-Contractions on Complete Metric Spaces, Vietnam J. Math., Volume 43 (2015), pp. 743-753 | DOI | Zbl
[4] On a theorem of Khan, Riv. Math. Univ. Parma., Volume 4 (1978), pp. 135-137
[5] On contractive maps, Proc. of Amer. Math. Soc., Volume 40 (1973), pp. 604-608
[6] A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste., Volume 8 (1976), pp. 69-72
[7] A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., Volume 8 (2017), pp. 113-119
[8] Generalization of Khan fixed point theorem, J. Math. Computer Sci., Volume 17 (2017), pp. 76-83
[9] Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed PoinTheory Appl., Volume 2012 (2012), pp. 1-6
[10] Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered b-metric spaces, J. Math. Appl., Volume 2014 (2014), pp. 1-9 | DOI
Cité par Sources :