A fixed point theorem for F-Khan-contractions on complete metric spaces and application to integral equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4564-4573.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, we introduce a new concept of contraction called F-Khan-contractions and prove a fixed point theorem concerning this contraction which generalizes the results announced by Khan [M. S. Khan, Rend. Inst. Math. Univ. Trieste., ${\bf 8}$ (1976), 69--72], Fisher [B. Fisher, Riv. Math. Univ. Parma., ${\bf 4}$ (1978), 135--137], and Piri et al. [H. Piri, S. Rahrovi, P. Kumam, J. Math. Computer Sci., ${\bf 17}$ (2017), 76--83]. An example and application for the solution of certain integral equations are given to illustrate the usability of the obtained results.
DOI : 10.22436/jnsa.010.09.02
Classification : 74H10, 54H25
Keywords: Fixed point, metric space, integral equations.

Piri, Hossein  1 ; Rahrovi, Samira  1 ; Marasi, Hamidreza  2 ; Kumam, Poom  3

1 Department of mathematics, University of Bonab, Bonab 5551761167, Iran
2 Department of applied mathematics, Faculty of mathematical sciences, University of Tabriz, Tabriz, Iran
3 KMUTT Fixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
@article{JNSA_2017_10_9_a1,
     author = {Piri, Hossein  and Rahrovi, Samira  and Marasi, Hamidreza  and Kumam, Poom },
     title = {A  fixed point theorem for {F-Khan-contractions} on complete metric spaces and application to  integral equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4564-4573},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/}
}
TY  - JOUR
AU  - Piri, Hossein 
AU  - Rahrovi, Samira 
AU  - Marasi, Hamidreza 
AU  - Kumam, Poom 
TI  - A  fixed point theorem for F-Khan-contractions on complete metric spaces and application to  integral equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4564
EP  - 4573
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/
DO  - 10.22436/jnsa.010.09.02
LA  - en
ID  - JNSA_2017_10_9_a1
ER  - 
%0 Journal Article
%A Piri, Hossein 
%A Rahrovi, Samira 
%A Marasi, Hamidreza 
%A Kumam, Poom 
%T A  fixed point theorem for F-Khan-contractions on complete metric spaces and application to  integral equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4564-4573
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/
%R 10.22436/jnsa.010.09.02
%G en
%F JNSA_2017_10_9_a1
Piri, Hossein ; Rahrovi, Samira ; Marasi, Hamidreza ; Kumam, Poom . A  fixed point theorem for F-Khan-contractions on complete metric spaces and application to  integral equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4564-4573. doi : 10.22436/jnsa.010.09.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.02/

[1] Cosentino, M.; Vetro, P. Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat, Volume 28 (2014), pp. 715-722 | DOI | Zbl

[2] Dukić, D.; Kadelburg, Z.; S. Radenović Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-13 | Zbl

[3] Dung, N. V.; Hang, V. T. L. A Fixed Point Theorem for Generalized F-Contractions on Complete Metric Spaces, Vietnam J. Math., Volume 43 (2015), pp. 743-753 | DOI | Zbl

[4] B. Fisher On a theorem of Khan, Riv. Math. Univ. Parma., Volume 4 (1978), pp. 135-137

[5] M. A. Geraghty On contractive maps, Proc. of Amer. Math. Soc., Volume 40 (1973), pp. 604-608

[6] M. S. Khan A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste., Volume 8 (1976), pp. 69-72

[7] Kumam, P.; Gopal, D.; L. Budhia A new fixed point theorem under Suzuki type Z-contraction mappings, J. Math. Anal., Volume 8 (2017), pp. 113-119

[8] Piri, H.; Rahrovi, S.; P. Kumam Generalization of Khan fixed point theorem, J. Math. Computer Sci., Volume 17 (2017), pp. 76-83

[9] Wardowski, D. Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed PoinTheory Appl., Volume 2012 (2012), pp. 1-6

[10] Zabihi, F.; A. Razani Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered b-metric spaces, J. Math. Appl., Volume 2014 (2014), pp. 1-9 | DOI

Cité par Sources :