Some new fractional integral inequalities for $s$-convex functions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4552-4563.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a similar equality which is given in [C. Yildiz, M. E.Ozdemir, M. Z. Sarikaya, Kyungpook Math. J., ${\bf 56}$ (2016), 161--172] is proved by using different symbols and impressions. By using this equality, some new fractional integral inequalities for $s$-convex functions are obtained. Also, some applications to special means of positive real numbers are given. If the $\alpha=1$ is taken, our results coincide with the results given in [E. Set, M. E. Ozdemir, M. Z. Sarikaya, Facta Unv. Ser. Math. Inform., ${\bf 27}$ (2012), 67--82]\) so our results are more general from the results given there.
DOI : 10.22436/jnsa.010.09.01
Classification : 26A51, 26A33, 26D10
Keywords: Ostrowski type inequalities, midpoint type inequalities, Riemann-Liouville fractional integrals, s-convex functions.

Karapinar, Dunya 1 ; Turhan, Sercan  2 ; Kunt, Mehmet  1 ; Iscan, Imdat  2

1 Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080, Turkey
2 Department of Mathematics, Faculty of Sciences and Arts, Giresun University, Giresun 28200, Turkey
@article{JNSA_2017_10_9_a0,
     author = {Karapinar, Dunya and Turhan, Sercan  and Kunt, Mehmet  and Iscan, Imdat },
     title = {Some new fractional integral inequalities for \(s\)-convex functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4552-4563},
     publisher = {mathdoc},
     volume = {10},
     number = {9},
     year = {2017},
     doi = {10.22436/jnsa.010.09.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/}
}
TY  - JOUR
AU  - Karapinar, Dunya
AU  - Turhan, Sercan 
AU  - Kunt, Mehmet 
AU  - Iscan, Imdat 
TI  - Some new fractional integral inequalities for \(s\)-convex functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4552
EP  - 4563
VL  - 10
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/
DO  - 10.22436/jnsa.010.09.01
LA  - en
ID  - JNSA_2017_10_9_a0
ER  - 
%0 Journal Article
%A Karapinar, Dunya
%A Turhan, Sercan 
%A Kunt, Mehmet 
%A Iscan, Imdat 
%T Some new fractional integral inequalities for \(s\)-convex functions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4552-4563
%V 10
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/
%R 10.22436/jnsa.010.09.01
%G en
%F JNSA_2017_10_9_a0
Karapinar, Dunya; Turhan, Sercan ; Kunt, Mehmet ; Iscan, Imdat . Some new fractional integral inequalities for \(s\)-convex functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4552-4563. doi : 10.22436/jnsa.010.09.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/

[1] Alomari, M.; Darus, M. Some Ostrowski’s type inequalities for convex functions with applications, RGMIA Res. Rep. Coll, Volume 2010 (2010), pp. 1-14

[2] Alomari, M.; Darus, M.; Dragomir, S. S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., Volume 23 (2010), pp. 1071-1076 | DOI

[3] Alomari, M.; Darus, M.; U. S. Kırmacı Some inequalities of Hermite-Hadamard type for s-convex functions , Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 1643-1652

[4] Baleanu, D.; Diethelm, K.; Scalas, E.; J. J. Trujillo Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012 | Zbl

[5] Dragomir, S. S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., Volume 32 (1999), pp. 687-696

[6] Dragomir, S. S.; Rassias, T. M. Ostrowski type inequalities and applications in numerical integration, Springer, Netherlands, 2000

[7] Farid, G. Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. Appl., Volume 14 (2017), pp. 64-68

[8] Hudzik, H.; L. Maligranda Some remarks on s-convex functions, Aequationes Math., Volume 48 (1994), pp. 100-111 | DOI | Zbl

[9] İ. İşcan Ostrowski type inequalities for harmonically s-convex functions, Konuralp J. Math., Volume 3 (2015), pp. 63-74 | Zbl

[10] İ. İşcan Ostrowski type inequalities for p-convex functions , New trends Math. Sci., Volume 4 (2016), pp. 140-150 | DOI

[11] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006

[12] Latif, M. A.; Dragomir, S. S.; Matouk, A. E. New inequalities of Ostrowski type for co-ordinated s-convex functions via fractional integrals, J. Frac. Calcu. Appl., Volume 4 (2013), pp. 22-36

[13] Matloka, M. Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, J. Sci. Res. & Rep., Volume 3 (2014), pp. 1633-1641

[14] Ostrowski, A. Über die Absolut abweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, Volume 10 (1938), pp. 226-227

[15] Sarıkaya, M. Z.; Budak, H. Generalized Ostrowski type inequalities for local fractional integrals , Proceed. Amer. Math. Soc., Volume 145 (2017), pp. 1527-1538 | DOI

[16] Set, E. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., Volume 63 (2012), pp. 1147-1154 | DOI | Zbl

[17] Set, E.; Özdemir, M. E.; Sarıkaya, M. Z. New inequalities of Ostrowskı’s type for s-convex functions in the second sense with applications, Facta Unv. Ser. Math. Inform., Volume 27 (2012), pp. 67-82 | Zbl

[18] Yıldız, C .; Özdemir, M. E.; Sarıkaya, M. Z. New Generalizations of Ostrowski-Like Type Inequalities for Fractional Integrals, Kyungpook Math. J., Volume 56 (2016), pp. 161-172 | DOI | Zbl

Cité par Sources :