Voir la notice de l'article provenant de la source International Scientific Research Publications
Karapinar, Dunya 1 ; Turhan, Sercan  2 ; Kunt, Mehmet  1 ; Iscan, Imdat  2
@article{JNSA_2017_10_9_a0, author = {Karapinar, Dunya and Turhan, Sercan and Kunt, Mehmet and Iscan, Imdat }, title = {Some new fractional integral inequalities for \(s\)-convex functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {4552-4563}, publisher = {mathdoc}, volume = {10}, number = {9}, year = {2017}, doi = {10.22436/jnsa.010.09.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/} }
TY - JOUR AU - Karapinar, Dunya AU - Turhan, Sercan AU - Kunt, Mehmet AU - Iscan, Imdat TI - Some new fractional integral inequalities for \(s\)-convex functions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4552 EP - 4563 VL - 10 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/ DO - 10.22436/jnsa.010.09.01 LA - en ID - JNSA_2017_10_9_a0 ER -
%0 Journal Article %A Karapinar, Dunya %A Turhan, Sercan %A Kunt, Mehmet %A Iscan, Imdat %T Some new fractional integral inequalities for \(s\)-convex functions %J Journal of nonlinear sciences and its applications %D 2017 %P 4552-4563 %V 10 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/ %R 10.22436/jnsa.010.09.01 %G en %F JNSA_2017_10_9_a0
Karapinar, Dunya; Turhan, Sercan ; Kunt, Mehmet ; Iscan, Imdat . Some new fractional integral inequalities for \(s\)-convex functions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 9, p. 4552-4563. doi : 10.22436/jnsa.010.09.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.09.01/
[1] Some Ostrowski’s type inequalities for convex functions with applications, RGMIA Res. Rep. Coll, Volume 2010 (2010), pp. 1-14
[2] Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., Volume 23 (2010), pp. 1071-1076 | DOI
[3] Some inequalities of Hermite-Hadamard type for s-convex functions , Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 1643-1652
[4] Fractional Calculus: Models and Numerical Methods, World Scientific, Singapore, 2012 | Zbl
[5] The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., Volume 32 (1999), pp. 687-696
[6] Ostrowski type inequalities and applications in numerical integration, Springer, Netherlands, 2000
[7] Some new Ostrowski type inequalities via fractional integrals, Int. J. Anal. Appl., Volume 14 (2017), pp. 64-68
[8] Some remarks on s-convex functions, Aequationes Math., Volume 48 (1994), pp. 100-111 | DOI | Zbl
[9] Ostrowski type inequalities for harmonically s-convex functions, Konuralp J. Math., Volume 3 (2015), pp. 63-74 | Zbl
[10] Ostrowski type inequalities for p-convex functions , New trends Math. Sci., Volume 4 (2016), pp. 140-150 | DOI
[11] Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006
[12] New inequalities of Ostrowski type for co-ordinated s-convex functions via fractional integrals, J. Frac. Calcu. Appl., Volume 4 (2013), pp. 22-36
[13] Ostrowski type inequalities for functions whose derivatives are h-convex via fractional integrals, J. Sci. Res. & Rep., Volume 3 (2014), pp. 1633-1641
[14] Über die Absolut abweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Hel, Volume 10 (1938), pp. 226-227
[15] Generalized Ostrowski type inequalities for local fractional integrals , Proceed. Amer. Math. Soc., Volume 145 (2017), pp. 1527-1538 | DOI
[16] New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., Volume 63 (2012), pp. 1147-1154 | DOI | Zbl
[17] New inequalities of Ostrowskı’s type for s-convex functions in the second sense with applications, Facta Unv. Ser. Math. Inform., Volume 27 (2012), pp. 67-82 | Zbl
[18] New Generalizations of Ostrowski-Like Type Inequalities for Fractional Integrals, Kyungpook Math. J., Volume 56 (2016), pp. 161-172 | DOI | Zbl
Cité par Sources :