Voir la notice de l'article provenant de la source International Scientific Research Publications
Paunović, Ljiljana 1 ; Kaushik, Preeti 2 ; Kumar, Sanjay 2
@article{JNSA_2017_10_8_a11, author = {Paunovi\'c, Ljiljana and Kaushik, Preeti and Kumar, Sanjay}, title = {Some applications with new admissibility contractions in \(b\)-metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {4162-4174}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/} }
TY - JOUR AU - Paunović, Ljiljana AU - Kaushik, Preeti AU - Kumar, Sanjay TI - Some applications with new admissibility contractions in \(b\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4162 EP - 4174 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/ DO - 10.22436/jnsa.010.08.12 LA - en ID - JNSA_2017_10_8_a11 ER -
%0 Journal Article %A Paunović, Ljiljana %A Kaushik, Preeti %A Kumar, Sanjay %T Some applications with new admissibility contractions in \(b\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 4162-4174 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/ %R 10.22436/jnsa.010.08.12 %G en %F JNSA_2017_10_8_a11
Paunović, Ljiljana; Kaushik, Preeti; Kumar, Sanjay. Some applications with new admissibility contractions in \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4162-4174. doi : 10.22436/jnsa.010.08.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/
[1] The contraction mapping principle in quasi-metric spaces , J. Funct. Anal., Volume 30 (1989), pp. 26-37
[2] Ulam-Hyers stability results for fixed point problems via \(\alpha-\psi\)-contractive mapping in (b)-metric space, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6
[3] Ulam-Hyers stability for operatorial equations, An. tiin. Univ. Al. I. Cuza Iai. Mat., Volume 57 (2011), pp. 65-74 | DOI
[4] A fixed point approach to stability of functional equations, Nonlinear Anal., Volume 74 (2011), pp. 6728-6732 | DOI
[5] A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl., Volume 400 (2013), pp. 68-75 | DOI
[6] Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-10
[7] Ordered b-metric spaces and Geraghty type contractive mappings, Military Technical Courier, Volume 65 (2017), pp. 331-345
[8] Contraction mappings in b-metric spaces , Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[9] Sur la porosite des contractions sans point fixed , C. R. Acad. Sci. Paris Sr. I Math., Volume 308 (1989), pp. 51-54 | Zbl
[10] Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-13 | Zbl
[11] A generalization of Geraghty’s theorem in partially ordered metric spaces and applications to ordinary differential equations , Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-9 | Zbl | DOI
[12] Ulam-Hyers stability and well-posedness of fixed point problems for \(\alpha-\lambda\)-contractions on quasi b-metric spaces, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-20 | Zbl | DOI
[13] On contractive mappings , Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI
[14] On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224 | DOI
[15] Common fixed point results in metric-type spaces , Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-15 | DOI
[16] Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-7 | DOI
[17] Well-posedness and porosity of certain classes of operators, Demonstratio Mathematica., Volume 38 (2005), pp. 170-176
[18] Ulam-Hyers stability for partial differential inclusions, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012), pp. 1-19
[19] Some remarks on the paper, Some fixed point generalizations are not real generalizations, J. Adv. Math. Stud., Volume 9 (2016), pp. 110-116 | Zbl
[20] Well posedness of fixed point problem in orbitally complete metric spaces, Stud. Cercet. tiin. Ser. Mat. Univ. Bacu., Volume 16 (2006), pp. 18-20
[21] Well posedness of fixed point problem in compact metric spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz., Volume 60 (2008), pp. 1-4
[22] A shorter and simple approach to study fixed point results via b-simulation functions, Iran. J. Math. Sci. Inform. (Accepted)
[23] Some cyclic fixed point results for contractive mappings, University Though, Publication in Nature Sciences, Volume 6 (2016), pp. 38-40
[24] A note on the paper, Integral equations with new admisibility types in b-metric spaces , J. Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-9
[25] Well-posedness of fixed point problems, Far East J. Math. Sci., Volume 3 (2001), pp. 393-401
[26] Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 229-245 | DOI | Zbl
[27] Remarks on Ulam stability of the operatorial equations , Fixed Point Theory, Volume 10 (2009), pp. 305-320 | Zbl
[28] Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI
[29] Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-23 | DOI
[30] Generalized Ulam-Hyers stability, well-posedness, and limit shadowing of fixed point problems for \(\alpha-\beta\)- contraction mapping in metric spaces , The Sci. World J., Volume 2014 (2014), pp. 1-7
[31] Fixed point result and applications on a b-metric space endowed with an arbitrary binary relation, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-13 | DOI | Zbl
[32] Ulam-Hyers-Rassias stability for set integral equations, Fixed Point Theory, Volume 13 (2012), pp. 659-668 | Zbl
[33] Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964
Cité par Sources :