Some applications with new admissibility contractions in $b$-metric spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4162-4174.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The work presented in this paper extends the idea of $\alpha-\beta$-contractive mappings in the framework of $b$-metric spaces. Fixed points are investigated for such kind of mappings. An example is given to show the superiority of our results. As applications we discuss Ulam-Hyres stability, well-posedness and limit shadowing of fixed point problem.
DOI : 10.22436/jnsa.010.08.12
Classification : 47H10, 54H25
Keywords: \(\alpha-\beta(b)\)-admissible mappings, fixed point, \(b\)-metric space, stability.

Paunović, Ljiljana 1 ; Kaushik, Preeti 2 ; Kumar, Sanjay 2

1 University of Pristina-Kosovska Mitrovica, Teacher Education School in Prizren-Leposavic, 38218 Leposavic, Serbia
2 Department of Mathematics, DCRUST, Murthal, Sonepat 131039, India
@article{JNSA_2017_10_8_a11,
     author = {Paunovi\'c, Ljiljana and Kaushik, Preeti and Kumar, Sanjay},
     title = {Some applications with new admissibility contractions in \(b\)-metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4162-4174},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/}
}
TY  - JOUR
AU  - Paunović, Ljiljana
AU  - Kaushik, Preeti
AU  - Kumar, Sanjay
TI  - Some applications with new admissibility contractions in \(b\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4162
EP  - 4174
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/
DO  - 10.22436/jnsa.010.08.12
LA  - en
ID  - JNSA_2017_10_8_a11
ER  - 
%0 Journal Article
%A Paunović, Ljiljana
%A Kaushik, Preeti
%A Kumar, Sanjay
%T Some applications with new admissibility contractions in \(b\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4162-4174
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/
%R 10.22436/jnsa.010.08.12
%G en
%F JNSA_2017_10_8_a11
Paunović, Ljiljana; Kaushik, Preeti; Kumar, Sanjay. Some applications with new admissibility contractions in \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4162-4174. doi : 10.22436/jnsa.010.08.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.12/

[1] I. A. Bakhtin The contraction mapping principle in quasi-metric spaces , J. Funct. Anal., Volume 30 (1989), pp. 26-37

[2] Bota, M. F.; Karapnar, E.; Mlesnite, O. Ulam-Hyers stability results for fixed point problems via \(\alpha-\psi\)-contractive mapping in (b)-metric space, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6

[3] Bota-Boriceanu, M. F.; Petrusel, A. Ulam-Hyers stability for operatorial equations, An. tiin. Univ. Al. I. Cuza Iai. Mat., Volume 57 (2011), pp. 65-74 | DOI

[4] Brzdek, J.; Chudziak, J.; Z. Páles A fixed point approach to stability of functional equations, Nonlinear Anal., Volume 74 (2011), pp. 6728-6732 | DOI

[5] Brzdek, J.; K. Cieplinski A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl., Volume 400 (2013), pp. 68-75 | DOI

[6] Cadariu, L.; Gavruta, L.; Gavruta, P. Fixed points and generalized Hyers-Ulam stability, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-10

[7] Chandok, S.; Jovanović, M.; Radenović, S. Ordered b-metric spaces and Geraghty type contractive mappings, Military Technical Courier, Volume 65 (2017), pp. 331-345

[8] S. Czerwik Contraction mappings in b-metric spaces , Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[9] Blassi, F. S. de; J. Myjak Sur la porosite des contractions sans point fixed , C. R. Acad. Sci. Paris Sr. I Math., Volume 308 (1989), pp. 51-54 | Zbl

[10] Dukić, D.; Kadelburg, Z.; S. Radenović Fixed points of Geraghty-type mappings in various generalized metric spaces, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-13 | Zbl

[11] Gordji, M. Eshaghi; Ramezani, M.; Cho, Y. J.; S. Pirbavafa A generalization of Geraghty’s theorem in partially ordered metric spaces and applications to ordinary differential equations , Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-9 | Zbl | DOI

[12] Felhi, A.; Sahmim, S.; H. Aydi Ulam-Hyers stability and well-posedness of fixed point problems for \(\alpha-\lambda\)-contractions on quasi b-metric spaces, Fixed Point Theory Appl., Volume 2016 (2016), pp. 1-20 | Zbl | DOI

[13] Geraghty, M. On contractive mappings , Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI

[14] D. H. Hyers On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U. S. A., Volume 27 (1941), pp. 222-224 | DOI

[15] Jovanovic, M.; Kadelburg, Z.; S. Radenovic Common fixed point results in metric-type spaces , Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-15 | DOI

[16] Khamsi, M. A. Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-7 | DOI

[17] Lahiri, B. K.; P. Das Well-posedness and porosity of certain classes of operators, Demonstratio Mathematica., Volume 38 (2005), pp. 170-176

[18] Lažar, V. L. Ulam-Hyers stability for partial differential inclusions, Electron. J. Qual. Theory Differ. Equ., Volume 2012 (2012), pp. 1-19

[19] Mustafa, Z.; Huang, H.; Radenović, S. Some remarks on the paper, Some fixed point generalizations are not real generalizations, J. Adv. Math. Stud., Volume 9 (2016), pp. 110-116 | Zbl

[20] Popa, V. Well posedness of fixed point problem in orbitally complete metric spaces, Stud. Cercet. tiin. Ser. Mat. Univ. Bacu., Volume 16 (2006), pp. 18-20

[21] V. Popa Well posedness of fixed point problem in compact metric spaces, Bul. Univ. Petrol-Gaze, Ploiesti, Sec. Mat. Inform. Fiz., Volume 60 (2008), pp. 1-4

[22] Rad, G. S.; Radenović, S.; Dolićanin-Dekić, D. A shorter and simple approach to study fixed point results via b-simulation functions, Iran. J. Math. Sci. Inform. (Accepted)

[23] Radenović, S.; Chandok, S.; Shatanawi, W. Some cyclic fixed point results for contractive mappings, University Though, Publication in Nature Sciences, Volume 6 (2016), pp. 38-40

[24] Radenović, S.; Došenović, T.; Osturk, V.; Dolićanin, Ć. A note on the paper, Integral equations with new admisibility types in b-metric spaces , J. Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-9

[25] Reich, S.; A. J. Zaslavski Well-posedness of fixed point problems, Far East J. Math. Sci., Volume 3 (2001), pp. 393-401

[26] Roshan, J. R.; Parvaneh, V.; Kadelburg, Z. Common fixed point theorems for weakly isotone increasing mappings in ordered b-metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 229-245 | DOI | Zbl

[27] A. Rus Remarks on Ulam stability of the operatorial equations , Fixed Point Theory, Volume 10 (2009), pp. 305-320 | Zbl

[28] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI

[29] Shahkoohi, R. J.; Razani, A. Some fixed point theorems for rational Geraghty contractive mappings in ordered b-metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-23 | DOI

[30] Sintunavarat, W. Generalized Ulam-Hyers stability, well-posedness, and limit shadowing of fixed point problems for \(\alpha-\beta\)- contraction mapping in metric spaces , The Sci. World J., Volume 2014 (2014), pp. 1-7

[31] Sintunavarat, W.; Plubtieng, S.; P. Katchang Fixed point result and applications on a b-metric space endowed with an arbitrary binary relation, Fixed Point Theory and Appl., Volume 2013 (2013), pp. 1-13 | DOI | Zbl

[32] Tise, F. A.; I. C. Tise Ulam-Hyers-Rassias stability for set integral equations, Fixed Point Theory, Volume 13 (2012), pp. 659-668 | Zbl

[33] Ulam, S. M. Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964

Cité par Sources :