Voir la notice de l'article provenant de la source International Scientific Research Publications
Abuage, M. 1 ; Kılıçman, A. 2
@article{JNSA_2017_10_8_a10, author = {Abuage, M. and K{\i}l{\i}\c{c}man, A.}, title = {Some properties and mappings on weakly \(\nu {\)-Lindel\"of} generalized topological spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {4150-4161}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/} }
TY - JOUR AU - Abuage, M. AU - Kılıçman, A. TI - Some properties and mappings on weakly \(\nu \)-Lindelöf generalized topological spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4150 EP - 4161 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/ DO - 10.22436/jnsa.010.08.11 LA - en ID - JNSA_2017_10_8_a10 ER -
%0 Journal Article %A Abuage, M. %A Kılıçman, A. %T Some properties and mappings on weakly \(\nu \)-Lindelöf generalized topological spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 4150-4161 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/ %R 10.22436/jnsa.010.08.11 %G en %F JNSA_2017_10_8_a10
Abuage, M.; Kılıçman, A. Some properties and mappings on weakly \(\nu \)-Lindelöf generalized topological spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4150-4161. doi : 10.22436/jnsa.010.08.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/
[1] Some Properties and Decomposition on \(a\nu \)-Lindelöf generalized topological spaces (submitted)
[2] Generalization of soft \(\nu \)-compact soft generalized topological spaces, arXiv, Volume 2016 (2016), pp. 1-10
[3] \(n\nu \)-Lindelöfness, Malay. J. Math. Sci., Volume 11 (2017), pp. 73-86
[4] A unified theory of contra-(\(\nu,\lambda\))-continuous functions in generalized topological spaces, Acta Math. Hungar., Volume 135 (2012), pp. 31-41 | DOI | Zbl
[5] A note on spaces with a countable \(\nu \)-base, Acta Math. Hungar., Volume 144 (2014), pp. 494-498 | DOI | Zbl
[6] Axioms of Countability in Generalized Topological Spaces, Int. Math. Forum, Volume 8 (2013), pp. 1523-1530 | Zbl | DOI
[7] Some counterexamples and properties on generalizations of Lindelöf spaces, Internat. J. Math. Math. Sci., Volume 19 (1996), pp. 737-746 | Zbl
[8] Generalized open sets, Acta Math. Hungar., Volume 75 (1997), pp. 65-87
[9] Generalized topology, generalized continuity , Acta Math. Hungar., Volume 96 (2002), pp. 351-357 | Zbl | DOI
[10] Extremally disconneted genealized topologies, Annales Univ. Sci. Budapest Sectio Math., Volume 47 (2004), pp. 91-96
[11] Generalized open sets in generalized topologies, Acta Math. Hungar., Volume 106 (2005), pp. 53-66 | DOI
[12] Further remarks on the formula of \(\gamma\)-interior, Acta Math. Hungar., Volume 113 (2006), pp. 325-332 | DOI | Zbl
[13] \(\delta\)-and \(\theta\)-modifications of generalized topologies, Acta Math. Hungar., Volume 120 (2008), pp. 275-279 | DOI | Zbl
[14] Generalized submaximal spaces, Acta Math. Hungar., Volume 134 (2011), pp. 132-138 | DOI
[15] On generalizations of regular-Lindelöf spaces , Internat. J. Math. and Math. Sci., Volume 27 (2001), pp. 535-539 | DOI
[16] On some spaces generated by \(\nu\)-regular sets, JP J. Geom. Topol., Volume 18 (2015), pp. 15-35 | DOI
[17] Strongly compact spaces, Delta J. Sci., Volume 8 (1984), pp. 30-46
[18] Almost continuity on generalized topological spaces, Acta Math. Hungar., Volume 125 (2009), pp. 121-125 | DOI
[19] (\(\delta,\delta'\))-continuity on generalized topological spaces, Acta Math. Hungar., Volume 129 (2010), pp. 350-356 | DOI | Zbl
[20] Some strong forms of \((g, g')\)-continuity on generalized topological spaces , Honam Math. J., Volume 33 (2011), pp. 85-91 | Zbl | DOI
[21] Unified characterizations for modifications of \(R_0\) and \(R_1\) topological spaces, Rend. Circ. Mat. Palermo, Volume 55 (2006), pp. 29-42 | DOI | Zbl
[22] The unified theory of certain types of generalizations of Lindelöf spaces , Demonstratio Math., Volume 43 (2010), pp. 203-212 | DOI | Zbl
[23] Pairwise almost Lindelöf bitopological spaces, Malaysian J. of Math. Sci., Volume 1 (2007), pp. 227-238
[24] On pairwise nearly Lindelöf bitopological spaces , Far East J. of Math. Sci., Volume 77 (2013), pp. 147-171 | Zbl
[25] On pairwise weakly Lindelöf bitopological spaces, Bulletin of the Iranian Math. Society, Volume 39 (2013), pp. 469-486 | Zbl
[26] On some properties of generalized open sets in generalized topological spaces, Demonstratio Math., Volume 46 (2013), pp. 415-427 | DOI
[27] On \(\nu\)-compact sets in \(\mu\)-spaces, Questions Answers in Gen. Topology, Volume 31 (2013), pp. 49-57
Cité par Sources :