Some properties and mappings on weakly $\nu $-Lindelöf generalized topological spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4150-4161.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Our work aims to study weakly $\nu $-Lindelöf (briefly $w\nu $-Lindelöf) space in generalized topological spaces. Some characterizations of $w\nu $-Lindelöf subspaces and subsets are showed. Furthermore, we shall show that the $w\nu $-Lindelöf generalized topological space is not a hereditary property. Finally, the effect of some mappings and decompositions of continuity are studied. The main result that we obtained on is the effect of almost $(\nu, \mu)$-continuous function on $w\nu $-Lindelöf generalized topological space.
DOI : 10.22436/jnsa.010.08.11
Classification : 54A05, 54B05, 54C05, 54C10, 54D15, 54D20
Keywords: \(\nu \)-Lindelöf, \(w\nu \)-Lindelöf, \(G\)-semiregular generalized topological space.

Abuage, M. 1 ; Kılıçman, A. 2

1 Institute for Mathematical Research, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
2 Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
@article{JNSA_2017_10_8_a10,
     author = {Abuage, M. and K{\i}l{\i}\c{c}man, A.},
     title = {Some properties and mappings on weakly \(\nu {\)-Lindel\"of} generalized topological spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4150-4161},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/}
}
TY  - JOUR
AU  - Abuage, M.
AU  - Kılıçman, A.
TI  - Some properties and mappings on weakly \(\nu \)-Lindelöf generalized topological spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4150
EP  - 4161
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/
DO  - 10.22436/jnsa.010.08.11
LA  - en
ID  - JNSA_2017_10_8_a10
ER  - 
%0 Journal Article
%A Abuage, M.
%A Kılıçman, A.
%T Some properties and mappings on weakly \(\nu \)-Lindelöf generalized topological spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4150-4161
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/
%R 10.22436/jnsa.010.08.11
%G en
%F JNSA_2017_10_8_a10
Abuage, M.; Kılıçman, A. Some properties and mappings on weakly \(\nu \)-Lindelöf generalized topological spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4150-4161. doi : 10.22436/jnsa.010.08.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.11/

[1] Abuage, M.; Kılıçman, A. Some Properties and Decomposition on \(a\nu \)-Lindelöf generalized topological spaces (submitted)

[2] Abuage, M.; Kılıçman, A.; Sarsak, M. S. Generalization of soft \(\nu \)-compact soft generalized topological spaces, arXiv, Volume 2016 (2016), pp. 1-10

[3] Abuage, M.; Kılıçman, A.; Sarsak, M. S. \(n\nu \)-Lindelöfness, Malay. J. Math. Sci., Volume 11 (2017), pp. 73-86

[4] Al-omari, A.; Noiri, T. A unified theory of contra-(\(\nu,\lambda\))-continuous functions in generalized topological spaces, Acta Math. Hungar., Volume 135 (2012), pp. 31-41 | DOI | Zbl

[5] M. Arar A note on spaces with a countable \(\nu \)-base, Acta Math. Hungar., Volume 144 (2014), pp. 494-498 | DOI | Zbl

[6] Ayawan, J. B. T.; J. S. R. Canoy Axioms of Countability in Generalized Topological Spaces, Int. Math. Forum, Volume 8 (2013), pp. 1523-1530 | Zbl | DOI

[7] Cammaroto, F.; Santoro, G. Some counterexamples and properties on generalizations of Lindelöf spaces, Internat. J. Math. Math. Sci., Volume 19 (1996), pp. 737-746 | Zbl

[8] Császár, Á. Generalized open sets, Acta Math. Hungar., Volume 75 (1997), pp. 65-87

[9] Á. Császár Generalized topology, generalized continuity , Acta Math. Hungar., Volume 96 (2002), pp. 351-357 | Zbl | DOI

[10] Császár, Á. Extremally disconneted genealized topologies, Annales Univ. Sci. Budapest Sectio Math., Volume 47 (2004), pp. 91-96

[11] Császár, Á. Generalized open sets in generalized topologies, Acta Math. Hungar., Volume 106 (2005), pp. 53-66 | DOI

[12] Á. Császár Further remarks on the formula of \(\gamma\)-interior, Acta Math. Hungar., Volume 113 (2006), pp. 325-332 | DOI | Zbl

[13] Császár, Á. \(\delta\)-and \(\theta\)-modifications of generalized topologies, Acta Math. Hungar., Volume 120 (2008), pp. 275-279 | DOI | Zbl

[14] Ekici, E. Generalized submaximal spaces, Acta Math. Hungar., Volume 134 (2011), pp. 132-138 | DOI

[15] Fawakhreh, A. J.; Kılıçman, A. On generalizations of regular-Lindelöf spaces , Internat. J. Math. and Math. Sci., Volume 27 (2001), pp. 535-539 | DOI

[16] Kılıçman, A.; Abuage, M. On some spaces generated by \(\nu\)-regular sets, JP J. Geom. Topol., Volume 18 (2015), pp. 15-35 | DOI

[17] Mashhour, A. S.; El-Monsef, M. A.; Hasanein, I. A.; Noiri, T. Strongly compact spaces, Delta J. Sci., Volume 8 (1984), pp. 30-46

[18] Min, W. K. Almost continuity on generalized topological spaces, Acta Math. Hungar., Volume 125 (2009), pp. 121-125 | DOI

[19] Min, W. K. (\(\delta,\delta'\))-continuity on generalized topological spaces, Acta Math. Hungar., Volume 129 (2010), pp. 350-356 | DOI | Zbl

[20] Min, W. K.; Y.-K. Kim Some strong forms of \((g, g')\)-continuity on generalized topological spaces , Honam Math. J., Volume 33 (2011), pp. 85-91 | Zbl | DOI

[21] T. Noriri Unified characterizations for modifications of \(R_0\) and \(R_1\) topological spaces, Rend. Circ. Mat. Palermo, Volume 55 (2006), pp. 29-42 | DOI | Zbl

[22] Noiri, T.; V. Popa The unified theory of certain types of generalizations of Lindelöf spaces , Demonstratio Math., Volume 43 (2010), pp. 203-212 | DOI | Zbl

[23] Salleh, Z.; Kılıçman, A. Pairwise almost Lindelöf bitopological spaces, Malaysian J. of Math. Sci., Volume 1 (2007), pp. 227-238

[24] Salleh, Z.; Kılıçman, A. On pairwise nearly Lindelöf bitopological spaces , Far East J. of Math. Sci., Volume 77 (2013), pp. 147-171 | Zbl

[25] Salleh, Z.; Kılıçman, A. On pairwise weakly Lindelöf bitopological spaces, Bulletin of the Iranian Math. Society, Volume 39 (2013), pp. 469-486 | Zbl

[26] M. S. Sarsak On some properties of generalized open sets in generalized topological spaces, Demonstratio Math., Volume 46 (2013), pp. 415-427 | DOI

[27] Sarsak, M. S.; On \(\nu\)-compact sets in \(\mu\)-spaces, Questions Answers in Gen. Topology, Volume 31 (2013), pp. 49-57

Cité par Sources :