Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4143-4149.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a Halpern-like iterative algorithm is investigated for finding a solution of a split feasibility problem and a solution to a nonexpansive operator equation. Strong convergence theorems are established in the framework of infinite dimensional Hilbert spaces.
DOI : 10.22436/jnsa.010.08.10
Classification : 47H06, 90C33
Keywords: Convergence analysis, Hilbert space, monotone mapping, split feasibility problem.

Zhang, Yunpeng 1 ; Cho, Sun Young 2

1 College of Electric Power, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
2 Center for General Education, China Medical University, Taichung 40402, Taiwan
@article{JNSA_2017_10_8_a9,
     author = {Zhang, Yunpeng and Cho, Sun Young},
     title = {Convergence analysis of a {Halpern-like} iterative algorithm in {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4143-4149},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/}
}
TY  - JOUR
AU  - Zhang, Yunpeng
AU  - Cho, Sun Young
TI  - Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4143
EP  - 4149
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/
DO  - 10.22436/jnsa.010.08.10
LA  - en
ID  - JNSA_2017_10_8_a9
ER  - 
%0 Journal Article
%A Zhang, Yunpeng
%A Cho, Sun Young
%T Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4143-4149
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/
%R 10.22436/jnsa.010.08.10
%G en
%F JNSA_2017_10_8_a9
Zhang, Yunpeng; Cho, Sun Young. Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4143-4149. doi : 10.22436/jnsa.010.08.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/

[1] Dehaish, B. A. Bin; Latif, A.; Bakodah, H. O.; Qin, X. A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2005), pp. 1-14 | DOI | Zbl

[2] Dehaish, B. A. Bin; Qin, X.; Latif, A.; H. Bakodah Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl

[3] F. E. Browder Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. U.S.A., Volume 53 (1965), pp. 1272-1276 | DOI

[4] C. Byrne A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., Volume 20 (2004), pp. 103-120 | Zbl | DOI

[5] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365 | DOI

[6] Censor, Y.; T. Elfving A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI

[7] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., Volume 21 (2005), pp. 2071-2084 | Zbl | DOI

[8] Cho, S. Y.; Dehaish, B. A. Bin; Qin, X. Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438

[9] Cho, S. Y.; Kang, S. M. Approximation of common solutions of variational inequalities via strict pseudocontractions , Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012), pp. 1607-1618 | Zbl | DOI

[10] Cho, S. Y.; Li, W.; Kang, S. M. Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., Volume 2013 (2013), pp. 1-14 | DOI

[11] Fang, N.; Y. Gong Viscosity iterative methods for split variational inclusion problems and fixed poit problems of a nonexpansive mappings, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-15

[12] Liu, L. S. Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI

[13] Qin, X.; Chang, S. S.; Cho, Y. J. Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World App., Volume 11 (2010), pp. 2963-2972 | DOI

[14] Qin, X.; Cho, S. Y. Convergence analysis of a monotone projection algorithm in reflexive banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI

[15] Qin, X.; Yao, J. C. Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., Volume 2016 (2016), pp. 1-9 | Zbl | DOI

[16] W. Takahahsi Weak and strong convergence theorems for families of nonlinear and nonself mappings in Hilbert spaces , J. Nonlinear Var. Anal., Volume 1 (2017), pp. 1-23

[17] Tang, J.; Chang, S. S. Strong convergence theorem of two-step iterative algorithm for split feasibility problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-13 | DOI | Zbl

[18] Tang, J.; Chang, S. S.; Dong, J. Split equality fixed point problems for two quasi-asymptotically pseudocontractive mappings, J. Nonlinear Funct. Anal., Volume 2017 (2017), pp. 1-15

[19] Zhou, H. Y.; Y.Wang Adaptively relaxed algorithms for solving the split feasibility problem with a new step size, J. Inequal. Appl., Volume 2014 (2014), pp. 1-22 | Zbl | DOI

Cité par Sources :