Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhang, Yunpeng 1 ; Cho, Sun Young 2
@article{JNSA_2017_10_8_a9, author = {Zhang, Yunpeng and Cho, Sun Young}, title = {Convergence analysis of a {Halpern-like} iterative algorithm in {Hilbert} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {4143-4149}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/} }
TY - JOUR AU - Zhang, Yunpeng AU - Cho, Sun Young TI - Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4143 EP - 4149 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/ DO - 10.22436/jnsa.010.08.10 LA - en ID - JNSA_2017_10_8_a9 ER -
%0 Journal Article %A Zhang, Yunpeng %A Cho, Sun Young %T Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 4143-4149 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/ %R 10.22436/jnsa.010.08.10 %G en %F JNSA_2017_10_8_a9
Zhang, Yunpeng; Cho, Sun Young. Convergence analysis of a Halpern-like iterative algorithm in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4143-4149. doi : 10.22436/jnsa.010.08.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.10/
[1] A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2005), pp. 1-14 | DOI | Zbl
[2] Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl
[3] Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci. U.S.A., Volume 53 (1965), pp. 1272-1276 | DOI
[4] A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., Volume 20 (2004), pp. 103-120 | Zbl | DOI
[5] A unified approach for inversion problems in intensity modulated radiation therapy, Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365 | DOI
[6] A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI
[7] The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., Volume 21 (2005), pp. 2071-2084 | Zbl | DOI
[8] Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438
[9] Approximation of common solutions of variational inequalities via strict pseudocontractions , Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012), pp. 1607-1618 | Zbl | DOI
[10] Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., Volume 2013 (2013), pp. 1-14 | DOI
[11] Viscosity iterative methods for split variational inclusion problems and fixed poit problems of a nonexpansive mappings, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-15
[12] Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI
[13] Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World App., Volume 11 (2010), pp. 2963-2972 | DOI
[14] Convergence analysis of a monotone projection algorithm in reflexive banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI
[15] Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., Volume 2016 (2016), pp. 1-9 | Zbl | DOI
[16] Weak and strong convergence theorems for families of nonlinear and nonself mappings in Hilbert spaces , J. Nonlinear Var. Anal., Volume 1 (2017), pp. 1-23
[17] Strong convergence theorem of two-step iterative algorithm for split feasibility problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-13 | DOI | Zbl
[18] Split equality fixed point problems for two quasi-asymptotically pseudocontractive mappings, J. Nonlinear Funct. Anal., Volume 2017 (2017), pp. 1-15
[19] Adaptively relaxed algorithms for solving the split feasibility problem with a new step size, J. Inequal. Appl., Volume 2014 (2014), pp. 1-22 | Zbl | DOI
Cité par Sources :