Second-order accurate numerical approximations for the fractional percolation equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4122-4136.

Voir la notice de l'article provenant de la source International Scientific Research Publications

First, we examine a practical numerical method which based on the classical Crank-Nicholson (CN) method combined with Richardson extrapolation is used to solve a class of one-dimensional initial-boundary value fractional percolation equation (FPE) with variable coefficients on a finite domain. Secondly, we present ADI-CN method for the two-dimensional fractional percolation equation. Stability and convergence of these methods are proved. Using these methods, we can achieve second-order convergence in time and space. Finally, numerical examples are presented to verify the order of convergence.
DOI : 10.22436/jnsa.010.08.08
Classification : 65M06, 65M12
Keywords: The fractional percolation equations, Crank-Nicholson method, ADI-CN method, stability, convergence, Richardson extrapolation.

Yin, Xiucao 1 ; Li, Lang 1 ; Fang, Shaomei 1

1 Department of Mathematics, South China Agricultural University, Guangzhou 510640, P. R. China
@article{JNSA_2017_10_8_a7,
     author = {Yin, Xiucao and Li, Lang and Fang, Shaomei},
     title = {Second-order accurate numerical approximations for the fractional percolation equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4122-4136},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.08/}
}
TY  - JOUR
AU  - Yin, Xiucao
AU  - Li, Lang
AU  - Fang, Shaomei
TI  - Second-order accurate numerical approximations for the fractional percolation equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4122
EP  - 4136
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.08/
DO  - 10.22436/jnsa.010.08.08
LA  - en
ID  - JNSA_2017_10_8_a7
ER  - 
%0 Journal Article
%A Yin, Xiucao
%A Li, Lang
%A Fang, Shaomei
%T Second-order accurate numerical approximations for the fractional percolation equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4122-4136
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.08/
%R 10.22436/jnsa.010.08.08
%G en
%F JNSA_2017_10_8_a7
Yin, Xiucao; Li, Lang; Fang, Shaomei. Second-order accurate numerical approximations for the fractional percolation equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4122-4136. doi : 10.22436/jnsa.010.08.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.08/

[1] Bhrawy, A. H.; Zaky, M. A.; Baleanu, D. New numerical approximations for space-time fractional Burgers equations via a Legendre spectral-collocation method, Rom. Rep. Phys., Volume 67 (2015), pp. 340-349

[2] Chen, S.; Liu, F.; V. Anh A novel implicit finite difference method for the one-dimensional fractional percolation equation, Numer. Algorithms, Volume 56 (2011), pp. 517-535 | DOI | Zbl

[3] Chen, S.; Liu, F.; K. Burrage Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media, Comput. Math. Appl., Volume 68 (2014), pp. 2133-2141 | Zbl | DOI

[4] Chen, S.; Liu, F.; Turner, I.; V. Anh An implicit numerical method for the two-dimensional fractional percolation equation, Appl. Math. Comput., Volume 219 (2013), pp. 4322-4331 | Zbl | DOI

[5] Chou, H.; Lee, B.; C. Chen The transient infiltration process for seepage flow from cracks, Advances in Subsurface Flow and Transport: Eastern and Western Approaches III, , 2006

[6] Guo, B.; Xu, Q.; Yin, Z. Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions, Appl. Math. Mech., Volume 37 (2016), pp. 403-416 | DOI | Zbl

[7] Guo, B.; Xu, Q.; A. Zhu A second-order finite difference method for two-dimensional fractional percolation equations, Commun. Comput. Phys., Volume 19 (2016), pp. 733-757 | DOI | Zbl

[8] Hashemi, M. S.; Darvishi, E.; Baleanu, D. A geometric approach for solving the density-dependent diffusion Nagumo equation, Adv. Difference Equ., Volume 2016 (2016), pp. 1-13 | Zbl | DOI

[9] J.-H. He Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Engrg., Volume 167 (1998), pp. 57-68 | DOI | Zbl

[10] A. X. Huang A new decomposition for solving percolation equations in porous media, Third International Symposium, on Aerothermodynamics of Internal Flows, Beijing, China, Volume 1 (1996), pp. 417-420

[11] Kumar, D.; Singh, J.; D. Baleanu A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dynam., Volume 87 (2016), pp. 511-517 | Zbl | DOI

[12] Kumar, D.; Singh, J.; Baleanu, D. Numerical computation of a fractional model of differential-difference equation, J. Comput. Nonlinear Dyn., Volume 11 (2016), pp. 1-6 | DOI

[13] Kumar, D.; Singh, J.; Kumar, S.; Singh, B. P. Numerical computation of nonlinear shock wave equation of fractional order, Ain Shams Eng. J., Volume 6 (2015), pp. 605-611 | DOI

[14] Liu, Q.; Liu, F.; Turner, I.; Anh, V. Numerical simulation for the 3D seepage flow with fractional derivatives in porous media, IMA J. Appl. Math., Volume 74 (2009), pp. 201-229 | Zbl | DOI

[15] Meerschaert, M. M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., Volume 56 (2006), pp. 80-90 | Zbl | DOI

[16] Miller, K. S.; Ross, B. An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993

[17] Petford, N.; M. A. Koenders Seepage flow and consolidation in a deforming porous medium, Geophys. Res. Abstr., Volume 5 (2003), pp. 1-13329

[18] I. Podlubny Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999

[19] Singh, R.; Kumar, J. Numerical computation of fractional Lotka-Volterra equation arising in biological systems, Nonlinear Eng., Volume 4 (2015), pp. 117-125 | DOI

[20] Singh, J.; Kumar, D.; Swroop, R. Numerical solution of time-and space-fractional coupled Burgers equations via homotopy algorithm, Alexandria Eng. J., Volume 55 (2016), pp. 1753-1763 | DOI

[21] Srivastava, H. M.; Kumar, D.; Singh, J. An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., Volume 45 (2017), pp. 192-204 | DOI

[22] Tadjeran, C.; Meerschaert, M. M. A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., Volume 220 (2007), pp. 813-823 | DOI

[23] Tadjeran, C.; Meerschaert, M. M.; Scheffler, H. P. A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys., Volume 213 (2006), pp. 205-213 | DOI

[24] Tchier, F.; Inc, M.; Korpinar, Z. S.; D. Baleanu Solutions of the time fractional reaction–diffusion equations with residual power series method, Adv. Mech. Eng., Volume 8 (2016), pp. 1-10 | DOI

[25] Thusyanthan, N. I.; Madabhushi, S. P. G. Scaling of seepage flow velocity in centrifuge models, CUED/D-SOILS/TR326 (2003), pp. 1-13

[26] Zhang, Y.; Baleanu, D.; Yang, X.-J. New solutions of the transport equations in porous media within local fractional derivative, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., Volume 17 (2016), pp. 230-236

Cité par Sources :