Relaxed inertial accelerated algorithms for solving split equality feasibility problem
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4109-4121.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the split equality feasibility problem and present two algorithms for solving the problem with special structure. We prove the weak convergence of these algorithms under mild conditions. Especially, the selection of stepsize is only dependent on the information of current iterative points, but independent from the prior knowledge of operator norms. These algorithms provide new ideas for solving the split equality feasibility problem. Numerical results demonstrate the feasibility and effectiveness of these algorithms.
DOI : 10.22436/jnsa.010.08.07
Classification : 47H09, 65K05, 47J25
Keywords: Split equality feasibility problem, relaxed inertial accelerated algorithm, weak convergence, subdifferential.

Li, Meixia 1 ; Kao, Xiping 2 ; Che, Haitao 3

1 School of Mathematics and Information Science, Weifang University, Weifang, 261061, China
2 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, 266590, China
3 School of Mathematics and Information Science, Weifang University, Weifang, 261061, China
@article{JNSA_2017_10_8_a6,
     author = {Li, Meixia and Kao, Xiping and Che, Haitao},
     title = {Relaxed inertial accelerated algorithms for solving split equality feasibility problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4109-4121},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/}
}
TY  - JOUR
AU  - Li, Meixia
AU  - Kao, Xiping
AU  - Che, Haitao
TI  - Relaxed inertial accelerated algorithms for solving split equality feasibility problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4109
EP  - 4121
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/
DO  - 10.22436/jnsa.010.08.07
LA  - en
ID  - JNSA_2017_10_8_a6
ER  - 
%0 Journal Article
%A Li, Meixia
%A Kao, Xiping
%A Che, Haitao
%T Relaxed inertial accelerated algorithms for solving split equality feasibility problem
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4109-4121
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/
%R 10.22436/jnsa.010.08.07
%G en
%F JNSA_2017_10_8_a6
Li, Meixia; Kao, Xiping; Che, Haitao. Relaxed inertial accelerated algorithms for solving split equality feasibility problem. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4109-4121. doi : 10.22436/jnsa.010.08.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/

[1] Bauschke, H. H.; Borwein, J. M. On projection algorithms for solving convex feasibility problems, SIAM Rev., Volume 38 (1996), pp. 367-426 | DOI

[2] Byrne, C. L.; Moudafi, A. Extensions of the CQ Algorithm for the split feasibility and split equality problems , (10th draft), hal-00776640-version 1, , 2012

[3] Censor, Y. Parallel application of block-iterative methods in medical imaging and radiation therapy, Math. Programming, Volume 42 (1988), pp. 307-325 | Zbl | DOI

[4] Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI

[5] Chang, S.-S. Some problems and results in the study of nonlinear analysis, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7, Athens, (1996), Nonlinear Anal., Volume 30 (1997), pp. 4197-4208 | DOI

[6] Chang, S.-S.; L.Wang; L.-J. Qin Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | Zbl | DOI

[7] Che, H.-T.; Li, M.-X. A simultaneous iterative method for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | DOI

[8] Clarke, F. H. Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983

[9] Dang, Y.-Z.; Sun, J.; Xu, H.-L. Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., Volume 13 (2017), pp. 1383-1394 | DOI | Zbl

[10] Deutsch, F. The method of alternating orthogonal projections, Approximation theory, spline functions and applications, Maratea, (1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, Volume 356 (1992), pp. 105-121 | DOI

[11] M. Fukushima A relaxed projection method for variational inequalities, Math. Programming, Volume 35 (1986), pp. 58-70 | DOI

[12] Gao, Y. Piecewise smooth Lyapunov function for a nonlinear dynamical system, J. Convex Anal., Volume 19 (2012), pp. 1009-1015 | Zbl

[13] Herman, G. T. Image reconstruction from projections: the fundamentals of computerized tomography, Academic Press, New York, 1980 | Zbl

[14] P. E. Maingé Convergence theorems for inertial KM-type algorithms , J. Comput. Appl. Math., Volume 219 (2008), pp. 223-236 | Zbl | DOI

[15] A. Moudafi Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal., Volume 15 (2014), pp. 809-818 | Zbl

[16] B. T. Polyak Minimization of unsmooth functionals, USSR Comput. Math. Math. Phys., Volume 9 (1969), pp. 14-29 | Zbl | DOI

[17] Qu, B.; Xiu, N.-H. A new halfspace-relaxation projection method for the split feasibility problem, Linear Algebra Appl., Volume 428 (2008), pp. 1218-1229 | DOI | Zbl

[18] Rockafellar, R. T. Convex analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970

[19] H.-K. Xu A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, Volume 22 (2006), pp. 2021-2034 | DOI | Zbl

[20] Yan, A.-L.; Wang, G.-Y.; Xiu, N.-H. Robust solutions of split feasibility problem with uncertain linear operator, J. Ind. Manag. Optim., Volume 3 (2007), pp. 749-761 | Zbl

[21] Q.-Z. Yang The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, Volume 20 (2004), pp. 1261-1266 | DOI

[22] Zhao, J.-L.; Yang, Q.-Z. Several solution methods for the split feasibility problem, Inverse Problems, Volume 21 (2005), pp. 1791-1799 | DOI

Cité par Sources :