Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Meixia 1 ; Kao, Xiping 2 ; Che, Haitao 3
@article{JNSA_2017_10_8_a6, author = {Li, Meixia and Kao, Xiping and Che, Haitao}, title = {Relaxed inertial accelerated algorithms for solving split equality feasibility problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {4109-4121}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/} }
TY - JOUR AU - Li, Meixia AU - Kao, Xiping AU - Che, Haitao TI - Relaxed inertial accelerated algorithms for solving split equality feasibility problem JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4109 EP - 4121 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/ DO - 10.22436/jnsa.010.08.07 LA - en ID - JNSA_2017_10_8_a6 ER -
%0 Journal Article %A Li, Meixia %A Kao, Xiping %A Che, Haitao %T Relaxed inertial accelerated algorithms for solving split equality feasibility problem %J Journal of nonlinear sciences and its applications %D 2017 %P 4109-4121 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/ %R 10.22436/jnsa.010.08.07 %G en %F JNSA_2017_10_8_a6
Li, Meixia; Kao, Xiping; Che, Haitao. Relaxed inertial accelerated algorithms for solving split equality feasibility problem. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4109-4121. doi : 10.22436/jnsa.010.08.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.07/
[1] On projection algorithms for solving convex feasibility problems, SIAM Rev., Volume 38 (1996), pp. 367-426 | DOI
[2] Extensions of the CQ Algorithm for the split feasibility and split equality problems , (10th draft), hal-00776640-version 1, , 2012
[3] Parallel application of block-iterative methods in medical imaging and radiation therapy, Math. Programming, Volume 42 (1988), pp. 307-325 | Zbl | DOI
[4] A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI
[5] Some problems and results in the study of nonlinear analysis, Proceedings of the Second World Congress of Nonlinear Analysts, Part 7, Athens, (1996), Nonlinear Anal., Volume 30 (1997), pp. 4197-4208 | DOI
[6] Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | Zbl | DOI
[7] A simultaneous iterative method for split equality problems of two finite families of strictly pseudononspreading mappings without prior knowledge of operator norms, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | DOI
[8] Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983
[9] Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., Volume 13 (2017), pp. 1383-1394 | DOI | Zbl
[10] The method of alternating orthogonal projections, Approximation theory, spline functions and applications, Maratea, (1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, Volume 356 (1992), pp. 105-121 | DOI
[11] A relaxed projection method for variational inequalities, Math. Programming, Volume 35 (1986), pp. 58-70 | DOI
[12] Piecewise smooth Lyapunov function for a nonlinear dynamical system, J. Convex Anal., Volume 19 (2012), pp. 1009-1015 | Zbl
[13] Image reconstruction from projections: the fundamentals of computerized tomography, Academic Press, New York, 1980 | Zbl
[14] Convergence theorems for inertial KM-type algorithms , J. Comput. Appl. Math., Volume 219 (2008), pp. 223-236 | Zbl | DOI
[15] Alternating CQ-algorithms for convex feasibility and split fixed-point problems, J. Nonlinear Convex Anal., Volume 15 (2014), pp. 809-818 | Zbl
[16] Minimization of unsmooth functionals, USSR Comput. Math. Math. Phys., Volume 9 (1969), pp. 14-29 | Zbl | DOI
[17] A new halfspace-relaxation projection method for the split feasibility problem, Linear Algebra Appl., Volume 428 (2008), pp. 1218-1229 | DOI | Zbl
[18] Convex analysis, Princeton Mathematical Series, No. 28 Princeton University Press, Princeton, N.J., 1970
[19] A variable Krasnoselskii-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, Volume 22 (2006), pp. 2021-2034 | DOI | Zbl
[20] Robust solutions of split feasibility problem with uncertain linear operator, J. Ind. Manag. Optim., Volume 3 (2007), pp. 749-761 | Zbl
[21] The relaxed CQ algorithm solving the split feasibility problem, Inverse Problems, Volume 20 (2004), pp. 1261-1266 | DOI
[22] Several solution methods for the split feasibility problem, Inverse Problems, Volume 21 (2005), pp. 1791-1799 | DOI
Cité par Sources :