Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhao, Hengjun 1 ; Cho, Sun Young 2
@article{JNSA_2017_10_8_a5, author = {Zhao, Hengjun and Cho, Sun Young}, title = {Weak convergence of an iterative algorithm for accretive operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {4099-4108}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.06/} }
TY - JOUR AU - Zhao, Hengjun AU - Cho, Sun Young TI - Weak convergence of an iterative algorithm for accretive operators JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4099 EP - 4108 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.06/ DO - 10.22436/jnsa.010.08.06 LA - en ID - JNSA_2017_10_8_a5 ER -
%0 Journal Article %A Zhao, Hengjun %A Cho, Sun Young %T Weak convergence of an iterative algorithm for accretive operators %J Journal of nonlinear sciences and its applications %D 2017 %P 4099-4108 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.06/ %R 10.22436/jnsa.010.08.06 %G en %F JNSA_2017_10_8_a5
Zhao, Hengjun; Cho, Sun Young. Weak convergence of an iterative algorithm for accretive operators. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4099-4108. doi : 10.22436/jnsa.010.08.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.06/
[1] A fixed point free nonexpansive map , Proc. Amer. Math. Soc., Volume 82 (1981), pp. 423-424 | DOI
[2] On the convergence of inexact Gauss-Newton method for solving singular equations, J. Nonlinear Funct. Anal., Volume 2016 (2016), pp. 1-22
[3] A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl
[4] Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl
[5] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[6] Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., Volume 54 (1965), pp. 1041-1044 | DOI
[7] A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., Volume 32 (1979), pp. 107-116 | DOI | Zbl
[8] A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, Volume 20 (2004), pp. 103-120 | Zbl | DOI
[9] Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438
[10] Approximation of common solutions of variational inequalities via strict pseudocontractions, Acta Math. Sci. Ser. B Engl. Ed., Volume 32 (2012), pp. 1607-1618 | Zbl | DOI
[11] Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl., Volume 2013 (2013), pp. 1-14 | DOI
[12] Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., Volume 43 (2001), pp. 377-401 | DOI
[13] A parallel algorithm for a class of convex programs, SIAM J. Control Optim., Volume 26 (1988), pp. 345-355 | DOI
[14] Nonlinear semigroups and evolution equations , J. Math. Soc. Japan, Volume 19 (1967), pp. 508-520 | DOI
[15] Convergence analysis of a Halpern-type iterative algorithm for zero points of accretive operators, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-9
[16] Régularisation d’inéquations variationnelles par approximations successives, (French) Rev. Française Informat. Recherche Opérationnelle, Volume 4 (1970), pp. 154-158 | Zbl
[17] Détermination approchée d’un point fixe d’une application pseudo-contractante , Cas de l’application prox, (French) C. R. Acad. Sci. Paris Sér. A-B, Volume 274 (1972), pp. 163-165 | Zbl
[18] Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., Volume 72 (1979), pp. 383-390 | DOI
[19] Iterative methods for generalized equilibrium problems and fixed point problems with applications, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 2963-2972 | DOI
[20] Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI
[21] Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators , J. Inequal. Appl., Volume 2016 (2016), pp. 1-9 | DOI
[22] Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., Volume 1 (1976), pp. 97-116 | DOI | Zbl
[23] Monotone operators and the proximal point algorithm, SIAM J. Control Optimization, Volume 14 (1976), pp. 877-898 | DOI
[24] A generalized hybrid steepest descent method and applications, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 111-126
[25] Weak and strong convergence theorems for families of nonlinear and nonself mappings in Hilbert spaces, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 1-23
[26] Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., Volume 147 (2010), pp. 27-41 | DOI
[27] Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138
[28] Zero theorems of accretive operators in reflexive Banach spaces, J. Nonlinear Funct. Anal., Volume 2013 (2013), pp. 1-12
Cité par Sources :