Voir la notice de l'article provenant de la source International Scientific Research Publications
Gu, Feng 1
@article{JNSA_2017_10_8_a4, author = {Gu, Feng}, title = {On some common coupled fixed point results in rectangular \(b\)-metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {4085-4098}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.05/} }
TY - JOUR AU - Gu, Feng TI - On some common coupled fixed point results in rectangular \(b\)-metric spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4085 EP - 4098 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.05/ DO - 10.22436/jnsa.010.08.05 LA - en ID - JNSA_2017_10_8_a4 ER -
%0 Journal Article %A Gu, Feng %T On some common coupled fixed point results in rectangular \(b\)-metric spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 4085-4098 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.05/ %R 10.22436/jnsa.010.08.05 %G en %F JNSA_2017_10_8_a4
Gu, Feng. On some common coupled fixed point results in rectangular \(b\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4085-4098. doi : 10.22436/jnsa.010.08.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.05/
[1] Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., Volume 217 (2010), pp. 195-202 | DOI
[2] Locally convex valued rectangular metric spaces and the Kannan’s fixed point theorem, J. Comput. Anal. Appl., Volume 14 (2012), pp. 484-494 | Zbl
[3] Some common fixed point results in rectangular metric spaces, Int. J. Anal., Volume 2013 (2013), pp. 1-7
[4] Common fixed points in rectangular b-metric spaces using (E.A) property, J. Adv. Math. Stud., Volume 8 (2015), pp. 159-169 | Zbl
[5] Fixed point results on a class of generalized metric spaces, Math. Sci. (Springer), Volume 2012 (2012), pp. 1-6 | DOI
[6] A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37 | Zbl
[7] Contraction mappings in b-metric spaces , Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[8] Common fixed points in generalized metric spaces , Appl. Math. Comput., Volume 218 (2012), pp. 7322-7325
[9] On some fixed point results in b-metric, rectangular and b-rectangular metric spaces, Arab J. Math. Sci., Volume 22 (2016), pp. 151-164 | Zbl | DOI
[10] Fixed points of (\(\psi,\phi\)) contractions on rectangular metric spaces , Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12 | Zbl | DOI
[11] Rectangular b-metric space and contraction principles, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1005-1013 | Zbl | DOI
[12] Common fixed point results for \(\psi-\phi\) contractions in rectangular metric spaces, Bull. Math. Anal. Appl., Volume 5 (2013), pp. 44-52 | Zbl
[13] Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393
[14] Common fixed points for ( \(\psi,\alpha,\beta\))-weakly contractive mappings in generalized metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-6 | DOI | Zbl
[15] Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-9 | Zbl | DOI
[16] Fixed point of a Ljubomir Ćirić’s quasi-contraction mapping in a generalized metric space, Publ. Math. Debrecen, Volume 61 (2002), pp. 589-594 | Zbl
[17] Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349
[18] Fixed points for (\(\psi,\phi\))-weakly contractive mappings in generalized metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 902-906
[19] Common fixed points for \(\alpha-\psi-\phi\)-contractions in generalized metric spaces, Nonlinear Anal. Model. Control, Volume 19 (2014), pp. 43-54
[20] New fixed point results in b-rectangular metric spaces, Nonlinear Anal. Model. Control, Volume 21 (2016), pp. 614-634 | DOI
[21] A fixed point theorem in a generalized metric space for mappings satisfying a contractive condition of integral type, Int. J. Math. Anal. (Ruse), Volume 3 (2009), pp. 1265-1271
Cité par Sources :