On the generalized solutions of a certain fourth order Euler equations
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4077-4084.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, using Laplace transform technique, we propose the generalized solutions of the fourth order Euler differential equations
$t^4y^{(4)}(t)+t^3y'''(t)+t^2y''(t)+ty'(t)+my(t)=0,$
where $m$ is an integer and $t\in\mathbb{R}$. We find types of solutions depend on the values of $m$. Precisely, we have a distributional solution for $m=-k^4-5k^3-9k^2-4k$ and a weak solution for $m=-k^4+5k^3-9k^2+4k,$ where $k\in\mathbb{N}.$
DOI : 10.22436/jnsa.010.08.04
Classification : 34A37, 44A10, 46F10, 46F12
Keywords: Generalized solution, distributional solution, Euler equation, Dirac delta function.

Liangprom, Amphon 1 ; Nonlaopon, Kamsing 1

1 Department of Mathematics, Khon Kaen University, Khon Kaen 40002, Thailand
@article{JNSA_2017_10_8_a3,
     author = {Liangprom, Amphon and Nonlaopon, Kamsing},
     title = {On the generalized solutions of a certain fourth order {Euler} equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4077-4084},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/}
}
TY  - JOUR
AU  - Liangprom, Amphon
AU  - Nonlaopon, Kamsing
TI  - On the generalized solutions of a certain fourth order Euler equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4077
EP  - 4084
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/
DO  - 10.22436/jnsa.010.08.04
LA  - en
ID  - JNSA_2017_10_8_a3
ER  - 
%0 Journal Article
%A Liangprom, Amphon
%A Nonlaopon, Kamsing
%T On the generalized solutions of a certain fourth order Euler equations
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4077-4084
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/
%R 10.22436/jnsa.010.08.04
%G en
%F JNSA_2017_10_8_a3
Liangprom, Amphon; Nonlaopon, Kamsing. On the generalized solutions of a certain fourth order Euler equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4077-4084. doi : 10.22436/jnsa.010.08.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/

[1] Akanbi, M. A. Third order Euler method for numerical solution of ordinary differential equations, ARPN J. Eng. Appl. Sci., Volume 5 (2010), pp. 42-49

[2] Boyce, W. E.; DiPrima, R. C. Elementary differential equations and boundary value problems, Seventh edition, John Wiley & Sons, Inc., New York-London-Sydney, 2001

[3] Bupasiri, S.; Nonlaopon, K. On the weak solutions of compound equations related to the ultra-hyperbolic operators, Far East J. Appl. Math., Volume 35 (2009), pp. 129-139 | Zbl

[4] Coddington, E. A. An introduction to ordinary differential equations, Prentice-Hall Mathematics Series Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961

[5] Coddington, E. A.; N. Levinson Theory of ordinary differential equations , McGraw-Hill Book Company, Inc., New York-Toronto-London, 1995

[6] Cooke, K. L.; Wiener, J. Distributional and analytic solutions of functional-differential equations, J. Math. Anal. Appl., Volume 98 (1984), pp. 111-129 | DOI

[7] Hernández-Ureña, L. G.; Estrada, R. Solution of ordinary differential equations by series of delta functions, J. Math. Anal. Appl., Volume 191 (1995), pp. 40-55 | DOI

[8] Kananthai, A. Distribution solutions of the third order Euler equation, Southeast Asian Bull. Math., Volume 23 (1999), pp. 627-631

[9] Kananthai, A. The distribution solutions of ordinary differential equation with polynomial coefficients, Southeast Asian Bull. Math., Volume 25 (2001), pp. 129-134 | DOI

[10] Kananthai, A.; Nonlaopon, K. On the weak solution of the compound ultra-hyperbolic equation, CMU. J., Volume 1 (2002), pp. 209-214

[11] Kananthai, A.; Suantai, S.; Longani, V. On the weak solutions of the equation related to the diamond operator, Vychisl. Tekhnol., Volume 5 (2000), pp. 61-67 | Zbl

[12] R. P. Kanwal Generalized functions, Theory and applications, Third edition, Birkhuser Boston, Inc., Boston, MA, 2004

[13] Krall, A. M.; Kanwal, R. P.; L. L. Littlejohn Distributional solutions of ordinary differential equations , Oscillations, bifurcation and chaos, Toronto, Ont., (1986), CMS Conf. Proc., Amer. Math. Soc., Providence, RI, Volume 8 (1987), pp. 227-246

[14] Kumar, D.; Singh, J.; Baleanu, D. A hybrid computational approach for Klein-Gordon equations on Cantor sets , Nonlinear Dynam., Volume 87 (2017), pp. 511-517 | Zbl | DOI

[15] Kumar, D.; Singh, J.; Baleanu, D. A new analysis for fractional model of regularized longwave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., Volume 2017 (2017), pp. 1-12 | DOI | Zbl

[16] Littlejohn, L. L.; Kanwal, R. P. Distributional solutions of the hypergeometric differential equation, J. Math. Anal. Appl., Volume 122 (1987), pp. 325-345 | DOI

[17] Nonlaopon, K.; Orankitjaroen, S.; Kananthai, A. The generalized solutions of a certain n order differential equations with polynomial coefficients, Integral Transforms Spec. Funct., Volume 26 (2015), pp. 1015-1024 | DOI | Zbl

[18] Sabuwala, A. H.; Leon, D. De; Particular solution to the Euler-Cauchy equation with polynomial non-homogeneities, , Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference. Suppl. Vol. II (2011), pp. 1271-1278 | Zbl

[19] Sarikaya, M. Z.; Yildirim, H. On the weak solutions of the compound Bessel ultra-hyperbolic equation, Appl. Math. Comput., Volume 189 (2007), pp. 910-917 | DOI | Zbl

[20] L. Schwartz Théorie des distributions á valeurs vectorielles, I, (French) Ann. Inst. Fourier, Grenoble, Volume 7 (1957), pp. 1-141 | DOI

[21] Singh, J.; Kumar, D.; Qurashi, M. A.; Baleanu, D. Analysis of a new fractional model for damped Bergers equation, Open Phys., Volume 15 (2017), pp. 35-41

[22] Singh, J.; Kumar, D.; Swroop, R.; S. Kumar An efficient computational approach for time-fractional Rosenau–Hyman equation , Neural Comput. Appl., Volume 2017 (2017), pp. 1-8 | DOI

[23] Srisombat, P.; Nonlaopon, K. On the weak solutions of the compound ultra-hyperbolic Bessel equation, Selçuk J. Appl. Math., Volume 11 (2010), pp. 127-136 | Zbl

[24] Srivastava, H. M.; Kumar, D.; Singh, J. An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., Volume 45 (2017), pp. 192-204 | DOI

[25] J. Wiener Generalized-function solutions of differential and functional-differential equations, J. Math. Anal. Appl., Volume 88 (1982), pp. 170-182 | DOI

[26] Wiener, J. Generalized solutions of functional-differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1993

[27] Wiener, J.; Cooke, K. L. Coexistence of analytic and distributional solutions for linear differential equations, I, J. Math. Anal. Appl., Volume 148 (1990), pp. 390-421 | DOI | Zbl

[28] Wiener, J.; Cooke, K. L.; S. M. Shah Coexistence of analytic and distributional solutions for linear differential equations, II, J. Math. Anal. Appl., Volume 159 (1991), pp. 271-289 | Zbl | DOI

[29] Zemanian, A. H. Distribution theory and transform analysis, An introduction to generalized functions, with applications, McGraw-Hill Book Co., New York-Toronto-London-Sydney., 1965

Cité par Sources :