Voir la notice de l'article provenant de la source International Scientific Research Publications
$t^4y^{(4)}(t)+t^3y'''(t)+t^2y''(t)+ty'(t)+my(t)=0,$ |
Liangprom, Amphon 1 ; Nonlaopon, Kamsing 1
@article{JNSA_2017_10_8_a3, author = {Liangprom, Amphon and Nonlaopon, Kamsing}, title = {On the generalized solutions of a certain fourth order {Euler} equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {4077-4084}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/} }
TY - JOUR AU - Liangprom, Amphon AU - Nonlaopon, Kamsing TI - On the generalized solutions of a certain fourth order Euler equations JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4077 EP - 4084 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/ DO - 10.22436/jnsa.010.08.04 LA - en ID - JNSA_2017_10_8_a3 ER -
%0 Journal Article %A Liangprom, Amphon %A Nonlaopon, Kamsing %T On the generalized solutions of a certain fourth order Euler equations %J Journal of nonlinear sciences and its applications %D 2017 %P 4077-4084 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/ %R 10.22436/jnsa.010.08.04 %G en %F JNSA_2017_10_8_a3
Liangprom, Amphon; Nonlaopon, Kamsing. On the generalized solutions of a certain fourth order Euler equations. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4077-4084. doi : 10.22436/jnsa.010.08.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.04/
[1] Third order Euler method for numerical solution of ordinary differential equations, ARPN J. Eng. Appl. Sci., Volume 5 (2010), pp. 42-49
[2] Elementary differential equations and boundary value problems, Seventh edition, John Wiley & Sons, Inc., New York-London-Sydney, 2001
[3] On the weak solutions of compound equations related to the ultra-hyperbolic operators, Far East J. Appl. Math., Volume 35 (2009), pp. 129-139 | Zbl
[4] An introduction to ordinary differential equations, Prentice-Hall Mathematics Series Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961
[5] Theory of ordinary differential equations , McGraw-Hill Book Company, Inc., New York-Toronto-London, 1995
[6] Distributional and analytic solutions of functional-differential equations, J. Math. Anal. Appl., Volume 98 (1984), pp. 111-129 | DOI
[7] Solution of ordinary differential equations by series of delta functions, J. Math. Anal. Appl., Volume 191 (1995), pp. 40-55 | DOI
[8] Distribution solutions of the third order Euler equation, Southeast Asian Bull. Math., Volume 23 (1999), pp. 627-631
[9] The distribution solutions of ordinary differential equation with polynomial coefficients, Southeast Asian Bull. Math., Volume 25 (2001), pp. 129-134 | DOI
[10] On the weak solution of the compound ultra-hyperbolic equation, CMU. J., Volume 1 (2002), pp. 209-214
[11] On the weak solutions of the equation related to the diamond operator, Vychisl. Tekhnol., Volume 5 (2000), pp. 61-67 | Zbl
[12] Generalized functions, Theory and applications, Third edition, Birkhuser Boston, Inc., Boston, MA, 2004
[13] Distributional solutions of ordinary differential equations , Oscillations, bifurcation and chaos, Toronto, Ont., (1986), CMS Conf. Proc., Amer. Math. Soc., Providence, RI, Volume 8 (1987), pp. 227-246
[14] A hybrid computational approach for Klein-Gordon equations on Cantor sets , Nonlinear Dynam., Volume 87 (2017), pp. 511-517 | Zbl | DOI
[15] A new analysis for fractional model of regularized longwave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., Volume 2017 (2017), pp. 1-12 | DOI | Zbl
[16] Distributional solutions of the hypergeometric differential equation, J. Math. Anal. Appl., Volume 122 (1987), pp. 325-345 | DOI
[17] The generalized solutions of a certain n order differential equations with polynomial coefficients, Integral Transforms Spec. Funct., Volume 26 (2015), pp. 1015-1024 | DOI | Zbl
[18] Particular solution to the Euler-Cauchy equation with polynomial non-homogeneities, , Discrete Contin. Dyn. Syst., Dynamical systems, differential equations and applications, 8th AIMS Conference. Suppl. Vol. II (2011), pp. 1271-1278 | Zbl
[19] On the weak solutions of the compound Bessel ultra-hyperbolic equation, Appl. Math. Comput., Volume 189 (2007), pp. 910-917 | DOI | Zbl
[20] Théorie des distributions á valeurs vectorielles, I, (French) Ann. Inst. Fourier, Grenoble, Volume 7 (1957), pp. 1-141 | DOI
[21] Analysis of a new fractional model for damped Bergers equation, Open Phys., Volume 15 (2017), pp. 35-41
[22] An efficient computational approach for time-fractional Rosenau–Hyman equation , Neural Comput. Appl., Volume 2017 (2017), pp. 1-8 | DOI
[23] On the weak solutions of the compound ultra-hyperbolic Bessel equation, Selçuk J. Appl. Math., Volume 11 (2010), pp. 127-136 | Zbl
[24] An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., Volume 45 (2017), pp. 192-204 | DOI
[25] Generalized-function solutions of differential and functional-differential equations, J. Math. Anal. Appl., Volume 88 (1982), pp. 170-182 | DOI
[26] Generalized solutions of functional-differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1993
[27] Coexistence of analytic and distributional solutions for linear differential equations, I, J. Math. Anal. Appl., Volume 148 (1990), pp. 390-421 | DOI | Zbl
[28] Coexistence of analytic and distributional solutions for linear differential equations, II, J. Math. Anal. Appl., Volume 159 (1991), pp. 271-289 | Zbl | DOI
[29] Distribution theory and transform analysis, An introduction to generalized functions, with applications, McGraw-Hill Book Co., New York-Toronto-London-Sydney., 1965
Cité par Sources :