Voir la notice de l'article provenant de la source International Scientific Research Publications
Jiang, Xiaoyu 1 ; Hong, Kicheon 1 ; Fu, Zunwei 2
@article{JNSA_2017_10_8_a1, author = {Jiang, Xiaoyu and Hong, Kicheon and Fu, Zunwei}, title = {Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix}, journal = {Journal of nonlinear sciences and its applications}, pages = {4058-4070}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/} }
TY - JOUR AU - Jiang, Xiaoyu AU - Hong, Kicheon AU - Fu, Zunwei TI - Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4058 EP - 4070 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/ DO - 10.22436/jnsa.010.08.02 LA - en ID - JNSA_2017_10_8_a1 ER -
%0 Journal Article %A Jiang, Xiaoyu %A Hong, Kicheon %A Fu, Zunwei %T Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix %J Journal of nonlinear sciences and its applications %D 2017 %P 4058-4070 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/ %R 10.22436/jnsa.010.08.02 %G en %F JNSA_2017_10_8_a1
Jiang, Xiaoyu; Hong, Kicheon; Fu, Zunwei. Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4058-4070. doi : 10.22436/jnsa.010.08.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/
[1] New decompositions of the inverse of a Toeplitz matrix, Signal processing, scattering and operator theory, and numerical methods, Amsterdam, (1989), Progr. Systems Control Theory, Birkhäuser Boston, Boston, MA, Volume 5 (1990), pp. 421-428 | Zbl
[2] A variant of the Gohberg-Semencul formula involving circulant matrices, SIAM J. Matrix Anal. Appl., Volume 12 (1991), pp. 534-540 | DOI | Zbl
[3] Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings, Appl. Math. Lett., Volume 48 (2015), pp. 14-22 | Zbl | DOI
[4] On inversion of Toeplitz and close to Toeplitz matrices, Linear Algebra Appl., Volume 75 (1986), pp. 173-192 | DOI
[5] Algebraic properties of Toeplitz operators, J. Reine Angew. Math., Volume 213 (1964), pp. 89-102 | DOI
[6] Hyponormality of Toeplitz operators , Proc. Amer. Math. Soc., Volume 103 (1988), pp. 809-812
[7] Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc., Volume 348 (1996), pp. 4153-4174 | Zbl | DOI
[8] Displacement operator based decompositions of matrices using circulants or other group matrices, Linear Algebra Appl., Volume 139 (1990), pp. 111-131 | DOI | Zbl
[9] Circulants, displacements and decompositions of matrices, Integral Equations Operator Theory, Volume 15 (1992), pp. 730-743 | DOI | Zbl
[10] On the reconstruction of Toeplitz matrix inverses from columns, Linear Algebra Appl., Volume 350 (2002), pp. 199-212 | DOI | Zbl
[11] Block Toeplitz operators with rational symbols, J. Phys. A, Volume 41 (2008), pp. 1-7 | DOI
[12] The explicit inverse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices, J. Appl. Math. Comput., Volume 53 (2017), pp. 1-16 | Zbl | DOI
[13] The explicit inverses of CUPL-Toeplitz and CUPL-Hankel matrices, East Asian J. Appl. Math., Volume 7 (2017), pp. 38-54 | Zbl | DOI
[14] Explicit determinants of the k-Fibonacci and k-Lucas RSFPLR circulant matrix in codes, Inf. Comput. Appl., Springer, Berlin, Heidelberg (2013), pp. 625-637 | DOI
[15] Algorithms for finding inverse of two patterned matrices over \(Z_p\), Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6
[16] , Exact determinants of some special circulant matrices involving four kinds of famous numbers, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-12
[17] Explicit inverse matrices of Tribonacci skew circulant type matrices , Appl. Math. Comput., Volume 268 (2015), pp. 93-102 | DOI
[18] Skew cyclic displacements and inversions of two innovative patterned matrices, Appl. Math. Comput., Volume 308 (2017), pp. 174-184 | DOI
[19] Norm equalities and inequalities for three circulant operator matrices, Acta Math. Sin. (Engl. Ser.), Volume 33 (2017), pp. 571-590 | DOI | Zbl
[20] Inversion of conjugate-Toeplitz matrices and conjugate-Hankel matrices, Linear Multilinear Algebra, Volume 65 (2017), pp. 256-268 | DOI | Zbl
[21] Explicit group inverse of an innovative patterned matrix , Appl. Math. Comput., Volume 274 (2016), pp. 220-228 | DOI
[22] Norm estimates of \(\omega\)-circulant operator matrices and isomorphic operators for \(\omega\)-circulant algebra, Sci. China Math., Volume 59 (2016), pp. 351-366 | Zbl | DOI
[23] Displacement ranks of matrices and linear equations, J. Math. Anal. Appl., Volume 68 (1979), pp. 395-407 | DOI
[24] Optimal control of stochastic system with Markovian jumping and multiplicative noises, Acta Automat. Sinica, Volume 38 (2017), pp. 1113-1118 | DOI
[25] Inversion of Toeplitz matrices with only two standard equations, Linear Algebra Appl., Volume 175 (1992), pp. 143-158 | Zbl | DOI
[26] Inversion of Toeplitz structured matrices using only standard equations , Linear Algebra Appl., Volume 207 (1994), pp. 49-70 | DOI | Zbl
[27] Generalized Bezoutian and the inversion problem for block matrices, I , General scheme, Integral Equations Operator Theory, Volume 9 (1986), pp. 790-819 | Zbl | DOI
[28] A note on inversion of Toeplitz matrices, Appl. Math. Lett., Volume 20 (2007), pp. 1189-1193 | DOI
[29] Weighted Toeplitz regularized least squares computation for image restoration, SIAM J. Sci. Comput., Volume 36 (2014), pp. 1-94 | Zbl | DOI
[30] On inversion of Toeplitz matrices, Linear Algebra Appl., Volume 348 (2002), pp. 145-151 | DOI
[31] Preconditioners for ill-conditioned Toeplitz matrices, BIT, Volume 39 (1999), pp. 513-533 | DOI
[32] On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers , WSEAS Trans. Math., Volume 12 (2013), pp. 42-53
[33] Exact determinants and inverses of generalized Lucas skew circulant type matrices , Appl. Math. Comput., Volume 270 (2015), pp. 105-113 | DOI
[34] Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices, J. Math. Anal. Appl., Volume 455 (2017), pp. 727-741 | Zbl | DOI
Cité par Sources :