Skew cyclic displacements and decompositions of inverse matrix for an innovative structure matrix
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4058-4070.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study mainly on a class of column upper-minus-lower (CUML) Toeplitz matrices without standard Toeplitz structure, which are `` similar'' to the Toeplitz matrices. Their (-1,-1)-cyclic displacements coincide with cyclic displacement of some standard Toeplitz matrices. We obtain the formula on representation for the inverses of CUML Toeplitz matrices in the form of sums of products of (-1, 1)-circulants and (1, -1)-circulants factor by constructing the corresponding displacement of the matrices. In addition, based on the relation between CUML Toeplitz matrices and CUML Hankel matrices, the inverse formula of CUML Hankel matrices can also be obtained.
DOI : 10.22436/jnsa.010.08.02
Classification : 15A09, 15B05
Keywords: CUML Toeplitz matrix, CUML Hankel matrix, skew cyclic displacement, RSFPLR circulants, RFMLR circulants, decomposition, inverse.

Jiang, Xiaoyu 1 ; Hong, Kicheon 1 ; Fu, Zunwei 2

1 Department of Information and Telecommunications Engineering, The University of Suwon, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, Korea
2 Department of Mathematics, The University of Suwon, Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, Korea
@article{JNSA_2017_10_8_a1,
     author = {Jiang, Xiaoyu and Hong, Kicheon and Fu, Zunwei},
     title = {Skew cyclic displacements  and decompositions of inverse matrix for an innovative structure matrix},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4058-4070},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/}
}
TY  - JOUR
AU  - Jiang, Xiaoyu
AU  - Hong, Kicheon
AU  - Fu, Zunwei
TI  - Skew cyclic displacements  and decompositions of inverse matrix for an innovative structure matrix
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4058
EP  - 4070
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/
DO  - 10.22436/jnsa.010.08.02
LA  - en
ID  - JNSA_2017_10_8_a1
ER  - 
%0 Journal Article
%A Jiang, Xiaoyu
%A Hong, Kicheon
%A Fu, Zunwei
%T Skew cyclic displacements  and decompositions of inverse matrix for an innovative structure matrix
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4058-4070
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/
%R 10.22436/jnsa.010.08.02
%G en
%F JNSA_2017_10_8_a1
Jiang, Xiaoyu; Hong, Kicheon; Fu, Zunwei. Skew cyclic displacements  and decompositions of inverse matrix for an innovative structure matrix. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4058-4070. doi : 10.22436/jnsa.010.08.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.02/

[1] Ammar, G.; P. Gader New decompositions of the inverse of a Toeplitz matrix, Signal processing, scattering and operator theory, and numerical methods, Amsterdam, (1989), Progr. Systems Control Theory, Birkhäuser Boston, Boston, MA, Volume 5 (1990), pp. 421-428 | Zbl

[2] Ammar, G.; P. Gader A variant of the Gohberg-Semencul formula involving circulant matrices, SIAM J. Matrix Anal. Appl., Volume 12 (1991), pp. 534-540 | DOI | Zbl

[3] Bai, Y.-Q.; Huang, T.-Z.; X.-M. Gu Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings, Appl. Math. Lett., Volume 48 (2015), pp. 14-22 | Zbl | DOI

[4] Ben-Artzi, A.; T. Shalom On inversion of Toeplitz and close to Toeplitz matrices, Linear Algebra Appl., Volume 75 (1986), pp. 173-192 | DOI

[5] Brown, A.; P. R. Halmos Algebraic properties of Toeplitz operators, J. Reine Angew. Math., Volume 213 (1964), pp. 89-102 | DOI

[6] C. C. Cowen Hyponormality of Toeplitz operators , Proc. Amer. Math. Soc., Volume 103 (1988), pp. 809-812

[7] Farenick, D. R.; Lee, W. Y. Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc., Volume 348 (1996), pp. 4153-4174 | Zbl | DOI

[8] P. D. Gader Displacement operator based decompositions of matrices using circulants or other group matrices, Linear Algebra Appl., Volume 139 (1990), pp. 111-131 | DOI | Zbl

[9] Gohberg, I.; Olshevsky, V. Circulants, displacements and decompositions of matrices, Integral Equations Operator Theory, Volume 15 (1992), pp. 730-743 | DOI | Zbl

[10] G. Heinig On the reconstruction of Toeplitz matrix inverses from columns, Linear Algebra Appl., Volume 350 (2002), pp. 199-212 | DOI | Zbl

[11] Hwang, I. S.; W. Y. Lee Block Toeplitz operators with rational symbols, J. Phys. A, Volume 41 (2008), pp. 1-7 | DOI

[12] Jiang, Z.-L.; Chen, J.-X. The explicit inverse of nonsingular conjugate-Toeplitz and conjugate-Hankel matrices, J. Appl. Math. Comput., Volume 53 (2017), pp. 1-16 | Zbl | DOI

[13] Jiang, Z.-L.; Chen, X.-T.; Wang, J.-M. The explicit inverses of CUPL-Toeplitz and CUPL-Hankel matrices, East Asian J. Appl. Math., Volume 7 (2017), pp. 38-54 | Zbl | DOI

[14] Jiang, X.-Y.; Hong, K.-C. Explicit determinants of the k-Fibonacci and k-Lucas RSFPLR circulant matrix in codes, Inf. Comput. Appl., Springer, Berlin, Heidelberg (2013), pp. 625-637 | DOI

[15] Jiang, X.-Y.; Hong, K.-C. Algorithms for finding inverse of two patterned matrices over \(Z_p\), Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6

[16] Jiang, X.-Y.; Hong, K.-C. , Exact determinants of some special circulant matrices involving four kinds of famous numbers, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-12

[17] Jiang, X.-Y.; K.-C. Hong Explicit inverse matrices of Tribonacci skew circulant type matrices , Appl. Math. Comput., Volume 268 (2015), pp. 93-102 | DOI

[18] Jiang, X.-Y.; K.-C. Hong Skew cyclic displacements and inversions of two innovative patterned matrices, Appl. Math. Comput., Volume 308 (2017), pp. 174-184 | DOI

[19] Jiang, Z. L.; Qiao, Y. C.; Wang, S. D. Norm equalities and inequalities for three circulant operator matrices, Acta Math. Sin. (Engl. Ser.), Volume 33 (2017), pp. 571-590 | DOI | Zbl

[20] Jiang, Z.-L.; Tam, T.-Y.; Y.-F. Wang Inversion of conjugate-Toeplitz matrices and conjugate-Hankel matrices, Linear Multilinear Algebra, Volume 65 (2017), pp. 256-268 | DOI | Zbl

[21] Jiang, Z.-L.; Wang, D.-D. Explicit group inverse of an innovative patterned matrix , Appl. Math. Comput., Volume 274 (2016), pp. 220-228 | DOI

[22] Jiang, Z.-L.; T.-T. Xu Norm estimates of \(\omega\)-circulant operator matrices and isomorphic operators for \(\omega\)-circulant algebra, Sci. China Math., Volume 59 (2016), pp. 351-366 | Zbl | DOI

[23] Kailath, T.; Kung, S. Y.; M. Morf Displacement ranks of matrices and linear equations, J. Math. Anal. Appl., Volume 68 (1979), pp. 395-407 | DOI

[24] Kong, S.-L.; Z.-S. Zhang Optimal control of stochastic system with Markovian jumping and multiplicative noises, Acta Automat. Sinica, Volume 38 (2017), pp. 1113-1118 | DOI

[25] Labahn, G.; Shalom, T. Inversion of Toeplitz matrices with only two standard equations, Linear Algebra Appl., Volume 175 (1992), pp. 143-158 | Zbl | DOI

[26] Labahn, G.; Shalom, T. Inversion of Toeplitz structured matrices using only standard equations , Linear Algebra Appl., Volume 207 (1994), pp. 49-70 | DOI | Zbl

[27] Lerer, L.; M. Tismenetsky Generalized Bezoutian and the inversion problem for block matrices, I , General scheme, Integral Equations Operator Theory, Volume 9 (1986), pp. 790-819 | Zbl | DOI

[28] Lv, X.-G.; Huang, T.-Z. A note on inversion of Toeplitz matrices, Appl. Math. Lett., Volume 20 (2007), pp. 1189-1193 | DOI

[29] Ng, M. K.; Pan, J.-Y. Weighted Toeplitz regularized least squares computation for image restoration, SIAM J. Sci. Comput., Volume 36 (2014), pp. 1-94 | Zbl | DOI

[30] Ng, M. K.; Rost, K.; Y.-W. Wen On inversion of Toeplitz matrices, Linear Algebra Appl., Volume 348 (2002), pp. 145-151 | DOI

[31] Potts, D.; G. Steidl Preconditioners for ill-conditioned Toeplitz matrices, BIT, Volume 39 (1999), pp. 513-533 | DOI

[32] Shen, N.; Jiang, Z.-L.; Li, J. On explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers , WSEAS Trans. Math., Volume 12 (2013), pp. 42-53

[33] Zheng, Y.-P.; S.-G. Shon Exact determinants and inverses of generalized Lucas skew circulant type matrices , Appl. Math. Comput., Volume 270 (2015), pp. 105-113 | DOI

[34] Zheng, Y.-P.; Shon, S.-G.; Kim, J.-Y. Cyclic displacements and decompositions of inverse matrices for CUPL Toeplitz matrices, J. Math. Anal. Appl., Volume 455 (2017), pp. 727-741 | Zbl | DOI

Cité par Sources :