Voir la notice de l'article provenant de la source International Scientific Research Publications
Abdou, Afrah A. N. 1 ; Khamsi, Mohamed A. 2
@article{JNSA_2017_10_8_a0, author = {Abdou, Afrah A. N. and Khamsi, Mohamed A.}, title = {Fixed point theorems in modular vector spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {4046-4057}, publisher = {mathdoc}, volume = {10}, number = {8}, year = {2017}, doi = {10.22436/jnsa.010.08.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/} }
TY - JOUR AU - Abdou, Afrah A. N. AU - Khamsi, Mohamed A. TI - Fixed point theorems in modular vector spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 4046 EP - 4057 VL - 10 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/ DO - 10.22436/jnsa.010.08.01 LA - en ID - JNSA_2017_10_8_a0 ER -
%0 Journal Article %A Abdou, Afrah A. N. %A Khamsi, Mohamed A. %T Fixed point theorems in modular vector spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 4046-4057 %V 10 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/ %R 10.22436/jnsa.010.08.01 %G en %F JNSA_2017_10_8_a0
Abdou, Afrah A. N.; Khamsi, Mohamed A. Fixed point theorems in modular vector spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4046-4057. doi : 10.22436/jnsa.010.08.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/
[1] The uniform convexity and uniform smoothness of Orlicz spaces, (Russian) Teor. Funkciĭ Funkcional. Anal. i Priložen., Volume 15 (1972), pp. 114-221
[2] Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., Volume 3 (1931), pp. 1-67 | EuDML | Zbl | DOI
[3] Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., Volume 54 (1965), pp. 1041-1044 | DOI
[4] Geometry of Orlicz spaces, With a preface by Julian Musielak, Dissertationes Math. (Rozprawy Mat.), Volume 356 (1996), pp. 1-204
[5] Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011 | DOI
[6] Asymptotically regular mappings in modular function spaces, Sci. Math. Jpn., Volume 53 (2001), pp. 295-304 | Zbl
[7] Zum Prinzip der kontraktiven Abbildung, (German) Math. Nachr., Volume 30 (1965), pp. 251-258 | Zbl | DOI
[8] On uniform convexity of Orlicz spaces , Nederl. Akad. Wetensch. Indag. Math., Volume 44 (1982), pp. 27-36 | DOI
[9] An introduction to metric spaces and fixed point theory , Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001 | DOI
[10] Fixed point theory in modular function spaces , With a foreword by W. A. Kirk. Birkhäuser/Springer, Cham, 2015 | DOI
[11] Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl., Volume 155 (1991), pp. 393-412 | DOI
[12] Fixed point theory in modular function spaces , Nonlinear Anal., Volume 14 (1990), pp. 935-953
[13] On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\) , Czechoslovak Math. J., Volume 41 (1991), pp. 592-618
[14] Modular function spaces , Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1988
[15] Banach function spaces , Thesis, Technische Hogeschool te Delft (1955), pp. 1-70
[16] Convexity of Orlicz spaces, Pacific J. Math., Volume 7 (1957), pp. 1451-1486
[17] Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983
[18] Modulared semi-ordered linear spaces, Maruzen Co., Ltd., Tokyo (1950), pp. 1-288
[19] Modulared sequence spaces, Proc. Japan Acad., Volume 27 (1951), pp. 508-512 | DOI
[20] Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo (1951), pp. 1-281
[21] Über konjugierte exponentenfolgen, Studia Math., Volume 3 (1931), pp. 200-211 | EuDML | Zbl | DOI
[22] On the modeling of electrorheological materials , Mech. Res. Commun., Volume 23 (1996), pp. 401-407 | DOI
[23] Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Springer- Verlag, Berlin, 2000
[24] Uniform convexity of Banach spaces \(1(\{p_i\})\), Studia Math., Volume 39 (1971), pp. 227-231
Cité par Sources :