Fixed point theorems in modular vector spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4046-4057.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, we initiate the metric fixed point theory in modular vector spaces under Nakano formulation. In particular, we establish an analogue to Banach contraction principle, Browder and G¨ohde fixed point theorems for nonexpansive mappings in the modular sense. Then we finish by proving a common fixed point result of a commutative family of nonexpansive mappings in the modular sense.
DOI : 10.22436/jnsa.010.08.01
Classification : 47H09, 46B20, 47H10
Keywords: Best approximant, electrorheological fluids, fixed point, modular vector spaces, Nakano, nonexpansive, uniformly convex.

Abdou, Afrah A. N. 1 ; Khamsi, Mohamed A. 2

1 Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21593, Saudi Arabia
2 Department of Mathematical Sciences, The University of Texas at El Paso, El Paso, TX 79968, U.S.A;Department of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
@article{JNSA_2017_10_8_a0,
     author = {Abdou, Afrah A. N. and Khamsi, Mohamed A.},
     title = {Fixed point theorems in modular vector spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {4046-4057},
     publisher = {mathdoc},
     volume = {10},
     number = {8},
     year = {2017},
     doi = {10.22436/jnsa.010.08.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/}
}
TY  - JOUR
AU  - Abdou, Afrah A. N.
AU  - Khamsi, Mohamed A.
TI  - Fixed point theorems in modular vector spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 4046
EP  - 4057
VL  - 10
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/
DO  - 10.22436/jnsa.010.08.01
LA  - en
ID  - JNSA_2017_10_8_a0
ER  - 
%0 Journal Article
%A Abdou, Afrah A. N.
%A Khamsi, Mohamed A.
%T Fixed point theorems in modular vector spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 4046-4057
%V 10
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/
%R 10.22436/jnsa.010.08.01
%G en
%F JNSA_2017_10_8_a0
Abdou, Afrah A. N.; Khamsi, Mohamed A. Fixed point theorems in modular vector spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 8, p. 4046-4057. doi : 10.22436/jnsa.010.08.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.08.01/

[1] Akimovič, V. A. The uniform convexity and uniform smoothness of Orlicz spaces, (Russian) Teor. Funkciĭ Funkcional. Anal. i Priložen., Volume 15 (1972), pp. 114-221

[2] Birnbaum, Z.; W. F. Orlicz Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math., Volume 3 (1931), pp. 1-67 | EuDML | Zbl | DOI

[3] Browder, F. E. Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., Volume 54 (1965), pp. 1041-1044 | DOI

[4] S.-T. Chen Geometry of Orlicz spaces, With a preface by Julian Musielak, Dissertationes Math. (Rozprawy Mat.), Volume 356 (1996), pp. 1-204

[5] Diening, L.; Harjulehto, P.; Hästö, P.; Růžička, M. Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011 | DOI

[6] Dominguez-Benavides, T.; Khamsi, M. A.; S. Samadi Asymptotically regular mappings in modular function spaces, Sci. Math. Jpn., Volume 53 (2001), pp. 295-304 | Zbl

[7] Göhde, D. Zum Prinzip der kontraktiven Abbildung, (German) Math. Nachr., Volume 30 (1965), pp. 251-258 | Zbl | DOI

[8] A. Kamińska On uniform convexity of Orlicz spaces , Nederl. Akad. Wetensch. Indag. Math., Volume 44 (1982), pp. 27-36 | DOI

[9] Khamsi, M. A.; Kirk, W. A. An introduction to metric spaces and fixed point theory , Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001 | DOI

[10] Khamsi, M. A.; W. M. Kozlowski Fixed point theory in modular function spaces , With a foreword by W. A. Kirk. Birkhäuser/Springer, Cham, 2015 | DOI

[11] Khamsi, M. A.; Kozlowski, W. M.; Chen, S.-T. Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl., Volume 155 (1991), pp. 393-412 | DOI

[12] Khamsi, M. A.; Kozlowski, W. K.; S. Reich Fixed point theory in modular function spaces , Nonlinear Anal., Volume 14 (1990), pp. 935-953

[13] Kováčik, O.; J. Rákosník On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\) , Czechoslovak Math. J., Volume 41 (1991), pp. 592-618

[14] W. M. Kozlowski Modular function spaces , Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 1988

[15] Luxemburg, W. A. J. Banach function spaces , Thesis, Technische Hogeschool te Delft (1955), pp. 1-70

[16] H. W. Milnes Convexity of Orlicz spaces, Pacific J. Math., Volume 7 (1957), pp. 1451-1486

[17] Musielak, J. Orlicz spaces and modular spaces, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1983

[18] H. Nakano Modulared semi-ordered linear spaces, Maruzen Co., Ltd., Tokyo (1950), pp. 1-288

[19] Nakano, H. Modulared sequence spaces, Proc. Japan Acad., Volume 27 (1951), pp. 508-512 | DOI

[20] H. Nakano Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo (1951), pp. 1-281

[21] W. Orlicz Über konjugierte exponentenfolgen, Studia Math., Volume 3 (1931), pp. 200-211 | EuDML | Zbl | DOI

[22] Rajagopal, K.; M. Růžička On the modeling of electrorheological materials , Mech. Res. Commun., Volume 23 (1996), pp. 401-407 | DOI

[23] Růžička, M. Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, Springer- Verlag, Berlin, 2000

[24] Sundaresan, K. Uniform convexity of Banach spaces \(1(\{p_i\})\), Studia Math., Volume 39 (1971), pp. 227-231

Cité par Sources :