Voir la notice de l'article provenant de la source International Scientific Research Publications
$x_{n+1} =\frac{F}{bx_nx_{n-1} + cx^2_{n-1} + f} , n = 0, 1, ... ,$ |
Kulenovic, M. R. S. 1 ; Moranjkic, S. 2 ; Nurkanovic, Z. 2
@article{JNSA_2017_10_7_a10, author = {Kulenovic, M. R. S. and Moranjkic, S. and Nurkanovic, Z.}, title = {Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms}, journal = {Journal of nonlinear sciences and its applications}, pages = {3477-3489}, publisher = {mathdoc}, volume = {10}, number = {7}, year = {2017}, doi = {10.22436/jnsa.010.07.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.11/} }
TY - JOUR AU - Kulenovic, M. R. S. AU - Moranjkic, S. AU - Nurkanovic, Z. TI - Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 3477 EP - 3489 VL - 10 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.11/ DO - 10.22436/jnsa.010.07.11 LA - en ID - JNSA_2017_10_7_a10 ER -
%0 Journal Article %A Kulenovic, M. R. S. %A Moranjkic, S. %A Nurkanovic, Z. %T Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms %J Journal of nonlinear sciences and its applications %D 2017 %P 3477-3489 %V 10 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.11/ %R 10.22436/jnsa.010.07.11 %G en %F JNSA_2017_10_7_a10
Kulenovic, M. R. S.; Moranjkic, S.; Nurkanovic, Z. Naimark-Sacker bifurcation of second order rational difference equation with quadratic terms. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3477-3489. doi : 10.22436/jnsa.010.07.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.11/
[1] On the dynamics of a rational difference equation, I, Int. J. Difference Equ., Volume 3 (2008), pp. 1-35
[2] On the dynamics of a rational difference equation, II, Int. J. Difference Equ., Volume 3 (2008), pp. 195-225
[3] Dynamics and bifurcations, Texts in Applied Mathematics, Springer-Verlag, New York, 1991
[4] Attractivity and global stability for linearizable difference equations, Comput. Math. Appl., Volume 57 (2009), pp. 1592-1607 | Zbl | DOI
[5] Global attractivity in a quadratic-linear rational difference equation with delay, J. Difference Equ. Appl., Volume 15 (2009), pp. 913-925 | Zbl | DOI
[6] Global attractivity in a rational delay difference equation with quadratic terms, J. Difference Equ. Appl., Volume 17 (2011), pp. 457-466 | Zbl | DOI
[7] Dynamics of second order rational difference equations, With open problems and conjectures, Chapman & Hall/CRC, Boca Raton, FL, 2001
[8] Discrete dynamical systems and difference equations with Mathematica, Chapman & Hall/CRC, Boca Raton, FL, 2002 | DOI
[9] A global attractivity result for maps with invariant boxes, Discrete Contin. Dyn. Syst. Ser. B, Volume 6 (2006), pp. 97-110 | Zbl
[10] Global bifurcation for discrete competitive systems in the plane, Discrete Contin. Dyn. Syst. Ser. B, Volume 12 (2009), pp. 133-149 | Zbl
[11] Invariant manifolds for competitive discrete systems in the plane, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 20 (2010), pp. 2471-2486 | Zbl | DOI
[12] Naimark-Sacker bifurcation of a certain second order quadratic fractional difference equation, J. Math. Comput. Sci., Volume 4 (2014), pp. 1025-1043
[13] Elements of applied bifurcation theory, Second edition. Applied Mathematical Sciences, Springer- Verlag, New York, 1998
[14] Stability, symbolic dynamics, and chaos, Stud. Adv. Math. Boca Raton, CRC Press, FL, 1995
[15] Global behaviours of rational difference equations of orders two and three with quadratic terms, J. Difference Equ. Appl., Volume 15 (2009), pp. 215-224 | DOI | Zbl
[16] Introduction to applied nonlinear dynamical systems and chaos, Second edition, Texts in Applied Mathematics, Springer-Verlag, New York, 2003
Cité par Sources :