Common fixed points of $\alpha$-dominated multivalued mappings on closed balls in a dislocated quasi b-metric space
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3456-3476.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce the concept of $\alpha$-dominated multivalued mappings and establish the existence of common fixed points of such mappings on a closed ball contained in left/right K-sequentially complete dislocated quasi b-metric spaces. These results improve, generalize, extend, unify, and complement various comparable results in the existing literature. Our results not only extend some primary results to left/right K-sequentially dislocated quasi b-metric spaces but also restrict the contractive conditions on a closed ball only. Some examples are presented to support the results proved herein. Finally as an application, we obtain some common fixed point results for single-valued mappings by an application of the corresponding results for multivalued mappings satisfying the contractive conditions more general than Banach type and Kannan type contractive conditions on closed balls in a left K-sequentially complete dislocated quasi b-metric space endowed with an arbitrary binary relation.
DOI : 10.22436/jnsa.010.07.10
Classification : 47H04, 47H07, 47H10
Keywords: K-sequentially complete, dislocated quasi b-metric spaces, \(\alpha\)-dominated multivalued mapping, closed ball, common fixed point.

Alofi, Abdulaziz Saleem Moslem 1 ; Al-Mazrooei, Abdullah Eqal 2 ; Leyew, Bahru Tsegaye 3 ; Abbas, Mujahid 4

1 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia;Department of Mathematics, University of Jeddah, P. O. Box 80327, Jeddah 21589, Saudi Arabia
3 Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa
4 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia;Department of Mathematics, University of Management and Technology, C-II Johar Town, Lahore, Pakistan
@article{JNSA_2017_10_7_a9,
     author = {Alofi, Abdulaziz Saleem Moslem and Al-Mazrooei, Abdullah Eqal and Leyew, Bahru Tsegaye and Abbas, Mujahid},
     title = {Common fixed points of \(\alpha\)-dominated multivalued mappings on closed balls in a dislocated quasi b-metric space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3456-3476},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2017},
     doi = {10.22436/jnsa.010.07.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.10/}
}
TY  - JOUR
AU  - Alofi, Abdulaziz Saleem Moslem
AU  - Al-Mazrooei, Abdullah Eqal
AU  - Leyew, Bahru Tsegaye
AU  - Abbas, Mujahid
TI  - Common fixed points of \(\alpha\)-dominated multivalued mappings on closed balls in a dislocated quasi b-metric space
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 3456
EP  - 3476
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.10/
DO  - 10.22436/jnsa.010.07.10
LA  - en
ID  - JNSA_2017_10_7_a9
ER  - 
%0 Journal Article
%A Alofi, Abdulaziz Saleem Moslem
%A Al-Mazrooei, Abdullah Eqal
%A Leyew, Bahru Tsegaye
%A Abbas, Mujahid
%T Common fixed points of \(\alpha\)-dominated multivalued mappings on closed balls in a dislocated quasi b-metric space
%J Journal of nonlinear sciences and its applications
%D 2017
%P 3456-3476
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.10/
%R 10.22436/jnsa.010.07.10
%G en
%F JNSA_2017_10_7_a9
Alofi, Abdulaziz Saleem Moslem; Al-Mazrooei, Abdullah Eqal; Leyew, Bahru Tsegaye; Abbas, Mujahid. Common fixed points of \(\alpha\)-dominated multivalued mappings on closed balls in a dislocated quasi b-metric space. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3456-3476. doi : 10.22436/jnsa.010.07.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.10/

[1] Alam, A.; Imdad, M. Relation-theoretic contraction principle, J. Fixed Point Theory Appl., Volume 17 (2015), pp. 693-702 | DOI | Zbl

[2] Alghamdi, M. A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-25 | Zbl | DOI

[3] An, T. V.; Tuyen, L. Q.; Dung, N. V. Stone-type theorem on b-metric spaces and applications, Topology Appl., Volume 185/186 (2015), pp. 50-64 | DOI | Zbl

[4] Arshad, M.; Shoaib, A.; Beg, I. Fixed point of a pair of contractive dominated mappings on a closed ball in an ordered dislocated metric space, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-15 | DOI | Zbl

[5] Azam, A.; Waseem, M.; Rashid, M. Fixed point theorems for fuzzy contractive mappings in quasi-pseudo-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-14 | DOI | Zbl

[6] Bakhtin, I. A. The contraction mapping principle in almost metric space, (Russian) Functional analysis, Ulyanovsk. Gos. Ped. Inst., Ulyanovsk, Volume 30 (1989), pp. 26-37

[7] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[8] Boriceanu, M. Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud. Univ. Babeş- Bolyai Math., Volume 54 (2009), pp. 3-14 | Zbl

[9] Ćirić, L. B. Fixed points for generalized multi-valued contractions, Mat. Vesnik, Volume 9 (1972), pp. 265-272 | EuDML

[10] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[11] Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, Volume 46 (1998), pp. 263-276

[12] Hitzler, P. Generalized metrics and topology in logic programming semantics, Ph.D. Thesis, School of Mathematics, Applied Mathematics and Statistics, National University Ireland,, University College Cork, 2001

[13] Hitzler, P.; Seda, A. K. Dislocated topologies, J. Electr. Eng., Volume 51 (2000), pp. 3-7 | Zbl

[14] Hussain, N.; Dorić, D.; Kadelburg, Z.; Radenović, S. Suzuki-type fixed point results in metric type spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12 | DOI

[15] Hussain, N.; Roshan, J. R.; Parvaneh, V.; Abbas, M. Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications, J. Inequal. Appl., Volume 2013 (2013), pp. 1-21 | DOI | Zbl

[16] Hussain, N.; Salimi, P; Latif, A. Fixed point results for single and set-valued \(\alpha-\eta-\psi-\)contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23 | DOI

[17] Kannan, R. Some results on fixed points, II, Amer. Math. Monthly, Volume 76 (1969), pp. 405-408 | DOI

[18] Klin-eam, C.; Suanoom, C. Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-12 | DOI | Zbl

[19] Latif, A.; Abdou, A. A. N. Multivalued generalized nonlinear contractive maps and fixed points, Nonlinear Anal., Volume 74 (2011), pp. 1436-1444 | DOI

[20] Latif, A.; Luc, D. T. Variational relation problems: existence of solutions and fixed points of contraction mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[21] Latif, A.; Tweddle, I. Some results on coincidence points, Bull. Austral. Math. Soc., Volume 59 (1999), pp. 111-117 | DOI

[22] Lipschutz, S. Schaum’s outline of theory and problems of set theory and related topics, McGraw-Hill, New York, 1964 | Zbl

[23] Nadler, S. B.; Jr. Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[24] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239 | Zbl

[25] Nieto, J. J.; Rodríguez-López, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), Volume 23 (2007), pp. 2205-2212 | Zbl | DOI

[26] Rahman, M. U.; Sarwar, M. Dislocated quasi b-metric space and fixed point theorems, Electron. J. Math. Anal. Appl., Volume 4 (2016), pp. 16-24 | Zbl

[27] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443 | Zbl | DOI

[28] Reilly, I. L.; Subrahmanyam, P. V.; Vamanamurthy, M. K. Cauchy sequences in quasipseudometric spaces, Monatsh. Math., Volume 93 (1982), pp. 127-140 | DOI

[29] Roshan, J. R.; Hussain, N.; Sedghi, S.; Shobkolaei, N. Suzuki-type fixed point results in b-metric spaces, Math. Sci. (Springer), Volume 9 (2015), pp. 153-160 | DOI

[30] Roshan, J. R.; Parvaneh, V.; Altun, I. Some coincidence point results in ordered b-metric spaces and applications in a system of integral equations, Appl. Math. Comput., Volume 226 (2014), pp. 725-737 | DOI | Zbl

[31] Samet, B.; Turinici, M. Fixed point theorems on a metric space endowed with an arbitrary binary relation and applications, Commun. Math. Anal., Volume 13 (2012), pp. 82-97 | Zbl

[32] Shah, M. H.; Hussain, N. Nonlinear contractions in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc., Volume 27 (2012), pp. 117-128 | Zbl | DOI

[33] Shoaib, A.; Arshadatjana, M.; Radenović, S. \(\alpha\)-dominated mappings, dislocated metric spaces and fixed point results, Fixed Point Theory Appl. ( to appeare)

[34] Wilson, W. A. On quasi-metric spaces, Amer. J. Math., Volume 53 (1931), pp. 675-684 | DOI

[35] Zeyada, F. M.; Hassan, G. H.; Ahmed, M. A. A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces, Arab. J. Sci. Eng. Sect. A Sci., Volume 31 (2006), pp. 111-114

[36] Zhu, C.-X.; Chen, C.-F.; Zhang, X.-Z. Some results in quasi-b-metric-like spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI

Cité par Sources :