On common fixed points that belong to the zero set of a certain function
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3447-3455.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We provide sufficient conditions under which the set of common fixed points of two self-mappings $f, g : X \rightarrow X$ is nonempty, and every common fixed point of f and g is the zero of a given function $\varphi:X \rightarrow [0,\infty)$. Next, we show the usefulness of our obtained result in partial metric fixed point theory.
DOI : 10.22436/jnsa.010.07.09
Classification : 54H25, 47H10
Keywords: \(\varphi\) -admissibility, common fixed point, zero set, partial metric.

Karapinar, Erdal 1 ; Samet, Bessem 2 ; Shahi, Priya 3

1 Department of Mathematics, Atilim University, Incek, Ankara, 06836, Turkey
2 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
3 St. Andrews College of Arts, Science and Commerce, St. Dominic Road, Bandra (West), Mumbai 400 050, India
@article{JNSA_2017_10_7_a8,
     author = {Karapinar, Erdal and Samet, Bessem and Shahi, Priya},
     title = {On common fixed points that belong to the zero set of a certain function},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3447-3455},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2017},
     doi = {10.22436/jnsa.010.07.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/}
}
TY  - JOUR
AU  - Karapinar, Erdal
AU  - Samet, Bessem
AU  - Shahi, Priya
TI  - On common fixed points that belong to the zero set of a certain function
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 3447
EP  - 3455
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/
DO  - 10.22436/jnsa.010.07.09
LA  - en
ID  - JNSA_2017_10_7_a8
ER  - 
%0 Journal Article
%A Karapinar, Erdal
%A Samet, Bessem
%A Shahi, Priya
%T On common fixed points that belong to the zero set of a certain function
%J Journal of nonlinear sciences and its applications
%D 2017
%P 3447-3455
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/
%R 10.22436/jnsa.010.07.09
%G en
%F JNSA_2017_10_7_a8
Karapinar, Erdal; Samet, Bessem; Shahi, Priya. On common fixed points that belong to the zero set of a certain function. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3447-3455. doi : 10.22436/jnsa.010.07.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/

[1] Abbas, M.; Altun, I.; Romaguera, S. Common fixed points of Ćirić-type contractions on partial metric spaces, Publ. Math. Debrecen, Volume 82 (2013), pp. 425-438 | DOI | Zbl

[2] Abdeljawad, T.; Karapınar, E.; Taş, K. A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719 | Zbl | DOI

[3] Boyd, D. W.; Wong, J. S. W. On nonlinear contractions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 458-464

[4] Ćirić, L.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., Volume 218 (2011), pp. 2398-2406 | DOI

[5] Heckmann, R. Approximation of metric spaces by partial metric spaces, Applications of ordered sets in computer science, Braunschweig, (1996), Appl. Categ. Structures, Volume 7 (1999), pp. 71-83 | DOI

[6] Karapınar, E.; O’Regan, D.; Samet, B. On the existence of fixed points that belong to the zero set of a certain function, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | Zbl | DOI

[7] Matthews, S. G. Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, Volume 728 (1994), pp. 183-197 | DOI

[8] Oltra, S.; Valero, O. Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, Volume 36 (2004), pp. 17-26

[9] Romaguera, S. A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-6 | Zbl | DOI

[10] Romaguera, S. Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., Volume 218 (2011), pp. 2398-2406

[11] Romaguera, S. Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. Gen. Topol., Volume 12 (2011), pp. 213-220 | Zbl

[12] Valero, O. On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., Volume 6 (2005), pp. 229-240 | DOI

Cité par Sources :