Voir la notice de l'article provenant de la source International Scientific Research Publications
Karapinar, Erdal 1 ; Samet, Bessem 2 ; Shahi, Priya 3
@article{JNSA_2017_10_7_a8, author = {Karapinar, Erdal and Samet, Bessem and Shahi, Priya}, title = {On common fixed points that belong to the zero set of a certain function}, journal = {Journal of nonlinear sciences and its applications}, pages = {3447-3455}, publisher = {mathdoc}, volume = {10}, number = {7}, year = {2017}, doi = {10.22436/jnsa.010.07.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/} }
TY - JOUR AU - Karapinar, Erdal AU - Samet, Bessem AU - Shahi, Priya TI - On common fixed points that belong to the zero set of a certain function JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 3447 EP - 3455 VL - 10 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/ DO - 10.22436/jnsa.010.07.09 LA - en ID - JNSA_2017_10_7_a8 ER -
%0 Journal Article %A Karapinar, Erdal %A Samet, Bessem %A Shahi, Priya %T On common fixed points that belong to the zero set of a certain function %J Journal of nonlinear sciences and its applications %D 2017 %P 3447-3455 %V 10 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/ %R 10.22436/jnsa.010.07.09 %G en %F JNSA_2017_10_7_a8
Karapinar, Erdal; Samet, Bessem; Shahi, Priya. On common fixed points that belong to the zero set of a certain function. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3447-3455. doi : 10.22436/jnsa.010.07.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.09/
[1] Common fixed points of Ćirić-type contractions on partial metric spaces, Publ. Math. Debrecen, Volume 82 (2013), pp. 425-438 | DOI | Zbl
[2] A generalized contraction principle with control functions on partial metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 716-719 | Zbl | DOI
[3] On nonlinear contractions, Proc. Amer. Math. Soc., Volume 20 (1969), pp. 458-464
[4] Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., Volume 218 (2011), pp. 2398-2406 | DOI
[5] Approximation of metric spaces by partial metric spaces, Applications of ordered sets in computer science, Braunschweig, (1996), Appl. Categ. Structures, Volume 7 (1999), pp. 71-83 | DOI
[6] On the existence of fixed points that belong to the zero set of a certain function, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | Zbl | DOI
[7] Partial metric topology, Papers on general topology and applications, Flushing, NY, (1992), Ann. New York Acad. Sci., New York Acad. Sci., New York, Volume 728 (1994), pp. 183-197 | DOI
[8] Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, Volume 36 (2004), pp. 17-26
[9] A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-6 | Zbl | DOI
[10] Fixed point theorems for generalized contractions on partial metric spaces, Topology Appl., Volume 218 (2011), pp. 2398-2406
[11] Matkowski’s type theorems for generalized contractions on (ordered) partial metric spaces, Appl. Gen. Topol., Volume 12 (2011), pp. 213-220 | Zbl
[12] On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., Volume 6 (2005), pp. 229-240 | DOI
Cité par Sources :