Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Dongfeng 1
@article{JNSA_2017_10_7_a7, author = {Li, Dongfeng}, title = {On nonexpansive and accretive operators in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {3437-3446}, publisher = {mathdoc}, volume = {10}, number = {7}, year = {2017}, doi = {10.22436/jnsa.010.07.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.08/} }
TY - JOUR AU - Li, Dongfeng TI - On nonexpansive and accretive operators in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 3437 EP - 3446 VL - 10 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.08/ DO - 10.22436/jnsa.010.07.08 LA - en ID - JNSA_2017_10_7_a7 ER -
%0 Journal Article %A Li, Dongfeng %T On nonexpansive and accretive operators in Banach spaces %J Journal of nonlinear sciences and its applications %D 2017 %P 3437-3446 %V 10 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.08/ %R 10.22436/jnsa.010.07.08 %G en %F JNSA_2017_10_7_a7
Li, Dongfeng. On nonexpansive and accretive operators in Banach spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3437-3446. doi : 10.22436/jnsa.010.07.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.08/
[1] Iterative regularization methods for nonlinear ill-posed operator equations with m-accretive mappings in Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 35 (2015), pp. 1318-1324 | Zbl | DOI
[2] Extending the applicability of a new Newton-like method for nonlinear equations, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-9
[3] Nonlinear semigroups and differential equations in Banach spaces, Translated from the Romanian, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976
[4] A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl
[5] Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl
[6] Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A., Volume 56 (1966), pp. 1080-1086 | DOI
[7] A strongly convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., Volume 48 (1974), pp. 114-126 | Zbl | DOI
[8] Strong convergence theorems by viscosity approximation methods for accretive mappings and nonexpansive mappings, J. Appl. Math. Inform., Volume 27 (2009), pp. 59-68
[9] Iterative solutions of nonlinear equations in smooth Banach spaces, Nonlinear Anal., Volume 26 (1996), pp. 1823-1834
[10] Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438
[11] Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15 | DOI | Zbl
[12] Iterative processes with mixed errors for nonlinear equations with perturbed m-accretive operators in Banach spaces, Appl. Math. Comput., Volume 133 (2002), pp. 389-406 | DOI | Zbl
[13] Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, Volume 19 (1967), pp. 508-520 | DOI
[14] Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., Volume 194 (1995), pp. 114-125 | DOI
[15] Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | DOI
[16] Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI
[17] On the weak convergence of iterative sequences for generalized equilibrium problems and strictly pseudocontractive mappings, Optimization, Volume 61 (2012), pp. 805-821 | Zbl | DOI
[18] Iterative algorithms with errors for zero points of m-accretive operators, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-17 | DOI | Zbl
[19] Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., Volume 2016 (2016), pp. 1-9 | Zbl | DOI
[20] On fixed point theorems obtained from existence theorems for differential equations, J. Math. Anal. Appl., Volume 54 (1976), pp. 26-36 | DOI
[21] Monotone operators and the proximal point algorithm, SIAM J. Control Optim., Volume 14 (1976), pp. 877-898 | DOI
[22] Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 1-21 | Zbl | DOI
[23] A characteristic condition for convergence of steepest descent approximation to accretive operator equations, J. Math. Anal. Appl., Volume 271 (2002), pp. 1-6 | DOI | Zbl
[24] Strong convergence of an explicit iterative algorithm for continuous pseudo-contractions in Banach spaces, Nonlinear Anal., Volume 70 (2009), pp. 4039-4046 | DOI
Cité par Sources :