Fuzzy vector metric spaces and some results
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3429-3436.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to enrich the theory of fuzzy metric spaces through vectors. Additionally we define the concept of fuzzy vector diameter to be able to prove Cantor’s intersection theorem and Baire’s theorem in a different way.
DOI : 10.22436/jnsa.010.07.07
Classification : 54A40, 54E35, 06F20, 46A40
Keywords: Vector metric space, fuzzy vector metric space, Riesz space, fuzzy diameter.

Eminoğlu, Şehla 1 ; Çevik, Cüneyt 1

1 Department of Mathematics, Faculty of Science, Gazi University, 06500 Teknikokullar, Ankara, Turkey
@article{JNSA_2017_10_7_a6,
     author = {Emino\u{g}lu, \c{S}ehla and \c{C}evik, C\"uneyt},
     title = {Fuzzy vector metric spaces and some results},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3429-3436},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2017},
     doi = {10.22436/jnsa.010.07.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.07/}
}
TY  - JOUR
AU  - Eminoğlu, Şehla
AU  - Çevik, Cüneyt
TI  - Fuzzy vector metric spaces and some results
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 3429
EP  - 3436
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.07/
DO  - 10.22436/jnsa.010.07.07
LA  - en
ID  - JNSA_2017_10_7_a6
ER  - 
%0 Journal Article
%A Eminoğlu, Şehla
%A Çevik, Cüneyt
%T Fuzzy vector metric spaces and some results
%J Journal of nonlinear sciences and its applications
%D 2017
%P 3429-3436
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.07/
%R 10.22436/jnsa.010.07.07
%G en
%F JNSA_2017_10_7_a6
Eminoğlu, Şehla; Çevik, Cüneyt. Fuzzy vector metric spaces and some results. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3429-3436. doi : 10.22436/jnsa.010.07.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.07/

[1] Aliprantis, C. D.; Border, K. C. Infinite-dimensional analysis, A hitchhiker’s guide, Second edition, Springer-Verlag, Berlin, 1999

[2] Aliprantis, C. D.; Burkinshaw, O. Positive operators, Reprint of the 1985 original, Springer, Dordrecht, 2006

[3] Çevik, C. On continuity of functions between vector metric spaces, J. Funct. Space, Volume 2014 (2014), pp. 1-6

[4] Çevik, C.; Altun, I. Vector metric spaces and some properties, Topol. Methods Nonlinear Anal., Volume 34 (2009), pp. 375-382 | DOI

[5] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399 | DOI

[6] George, A.; Veeramani, P. On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, Volume 90 (1997), pp. 365-368 | DOI

[7] Kramosil, I.; Michałek, J. Fuzzy metrics and statistical metric spaces, Kybernetika (Prague), Volume 11 (1975), pp. 336-344

[8] Luxemburg, W. A. J.; Zaanen, A. C. Riesz spaces, Vol. I, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., New York, 1971 | Zbl

[9] Munkres, J. R. Topology: a first course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975

[10] Rudin, W. Functional analysis, Second edition, International Series in Pure and Applied Mathematics, McGraw- Hill, Inc., New York, 1991

[11] Schweizer, B.; Sklar, A. Statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 313-334

[12] Schweizer, B.; Sklar, A. Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland Publishing Co., New York, 1983

[13] Şuhubi, E. S. Functional analysis, Kluwer Academic Publishers, Dordrecht, 2003

[14] Zadeh, L. A. Fuzzy sets, Information and Control, Volume 8 (1965), pp. 338-353

Cité par Sources :