Voir la notice de l'article provenant de la source International Scientific Research Publications
Yokuş, Asıf 1 ; Kaya, Doğan 2
@article{JNSA_2017_10_7_a5, author = {Yoku\c{s}, As{\i}f and Kaya, Do\u{g}an}, title = {Numerical and exact solutions for time fractional {Burgers'} equation}, journal = {Journal of nonlinear sciences and its applications}, pages = {3419-3428}, publisher = {mathdoc}, volume = {10}, number = {7}, year = {2017}, doi = {10.22436/jnsa.010.07.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.06/} }
TY - JOUR AU - Yokuş, Asıf AU - Kaya, Doğan TI - Numerical and exact solutions for time fractional Burgers' equation JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 3419 EP - 3428 VL - 10 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.06/ DO - 10.22436/jnsa.010.07.06 LA - en ID - JNSA_2017_10_7_a5 ER -
%0 Journal Article %A Yokuş, Asıf %A Kaya, Doğan %T Numerical and exact solutions for time fractional Burgers' equation %J Journal of nonlinear sciences and its applications %D 2017 %P 3419-3428 %V 10 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.06/ %R 10.22436/jnsa.010.07.06 %G en %F JNSA_2017_10_7_a5
Yokuş, Asıf; Kaya, Doğan. Numerical and exact solutions for time fractional Burgers' equation. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3419-3428. doi : 10.22436/jnsa.010.07.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.06/
[1] Application of a fractional advection-dispersion equation, Water Resour. Res., Volume 36 (2000), pp. 1403-1412 | DOI
[2] Fractional diffusion equations by the Kansa method, Comput. Math. Appl., Volume 59 (2010), pp. 1614-1620 | DOI
[3] New similarity solutions for the modified Boussinesq equation, J. Phys. A, Volume 22 (1989), pp. 2355-2367 | DOI
[4] Modified extended tanh-function method for solving nonlinear partial differential equations, Phys. Lett. A, Volume 299 (2002), pp. 179-188 | DOI
[5] Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, Volume 277 (2000), pp. 212-218 | Zbl | DOI
[6] A comparison between Cole-Hopf transformation and the decomposition method for solving Burgers’ equations, Appl. Math. Comput., Volume 173 (2006), pp. 126-136 | Zbl | DOI
[7] The extended (\(\frac{G'}{G}\) )-expansion method and its applications to the Whitham-Broer-Kaup-like equations and coupled Hirota-Satsuma KdV equations, Appl. Math. Comput., Volume 215 (2010), pp. 3214-3221 | DOI | Zbl
[8] Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, Volume 30 (2006), pp. 700-708 | DOI
[9] A meshfree method for numerical solution of KdV equation, Eng. Anal. Bound. Elem., Volume 32 (2008), pp. 849-855 | DOI
[10] Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., Volume 191 (2007), pp. 12-20 | DOI
[11] Fractional calculus and continuous-time finance, II, the waiting-time distribution, Phys. A, Volume 287 (2000), pp. 468-481 | DOI
[12] Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., Volume 172 (2004), pp. 65-77 | DOI | Zbl
[13] An introduction to the fractional calculus and fractional differential equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993
[14] Generalized Taylor’s formula, Appl. Math. Comput., Volume 186 (2007), pp. 286-293 | DOI
[15] The fractional calculus, Theory and applications of differentiation and integration to arbitrary order, With an annotated chronological bibliography by Bertram Ross, Mathematics in Science and Engineering, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 2006
[16] An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations, Comput. Phys. Commun., Volume 98 (1996), pp. 288-300 | Zbl | DOI
[17] Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999
[18] Fractional calculus and continuous-time finance, Phys. A, Volume 284 (2000), pp. 376-384 | DOI
[19] Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., Volume 228 (2009), pp. 4038-4054 | DOI
[20] Finite difference methods for fractional dispersion equations, Appl. Math. Comput., Volume 216 (2010), pp. 3329-3334 | DOI
[21] Finite difference approximations for the fractional advection-diffusion equation, Phys. Lett. A, Volume 373 (2009), pp. 4405-4408 | DOI
[22] The (\(\frac{G'}{G}\) )-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, Volume 372 (2008), pp. 417-423 | DOI
[23] The tanh method: solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd- Bullough equations, Chaos Solitons Fractals, Volume 25 (2005), pp. 55-63 | DOI | Zbl
[24] Solutions of some nonlinear partial differential equations and comparison of their solutions, Ph.D. Thesis, Fırat University, Elazig, Turkey, 2011
[25] Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys. , Volume 216 (2006), pp. 264-274 | DOI
[26] Chaos, fractional kinetics, and anomalous transport, Phys. Rep., Volume 371 (2002), pp. 461-580 | Zbl | DOI
[27] Generalized extended tanh-function method and its application to (1+1)-dimensional dispersive long wave equation, Phys. Lett. A, Volume 311 (2003), pp. 145-157 | Zbl | DOI
[28] New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., Volume 46 (2008), pp. 1079-1095 | DOI | Zbl
Cité par Sources :