Stochastic stability analysis for a neutral-type neural networks with Markovian jumping parameters
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3409-3418.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the stability problem is studied for a class of stochastic neutral-type neural networks with Markovian jumping parameters. By using fixed point theorem, the existence and uniqueness of solution for the neural networks system are obtained. Furthermore, based on the Lyapunov-Krasovskii functional, a linear matrix inequality (LMI) approach is developed to establish sufficient conditions to guarantee the mean square stability of the neural networks. An example is given to show the effectiveness of the proposed stability criterion.
DOI : 10.22436/jnsa.010.07.05
Classification : 34B15
Keywords: Markovian jumping parameters, linear matrix inequality, mean square stability.

Guo, Song 1 ; Du, Bo 2

1 Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu, 223300, P. R. China
2 Department of Mathematics, Huaiyin Normal University, Huaian , Jiangsu, 223300, P. R. China
@article{JNSA_2017_10_7_a4,
     author = {Guo, Song and Du, Bo},
     title = {Stochastic stability analysis  for a neutral-type neural networks with {Markovian} jumping parameters},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3409-3418},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2017},
     doi = {10.22436/jnsa.010.07.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.05/}
}
TY  - JOUR
AU  - Guo, Song
AU  - Du, Bo
TI  - Stochastic stability analysis  for a neutral-type neural networks with Markovian jumping parameters
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 3409
EP  - 3418
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.05/
DO  - 10.22436/jnsa.010.07.05
LA  - en
ID  - JNSA_2017_10_7_a4
ER  - 
%0 Journal Article
%A Guo, Song
%A Du, Bo
%T Stochastic stability analysis  for a neutral-type neural networks with Markovian jumping parameters
%J Journal of nonlinear sciences and its applications
%D 2017
%P 3409-3418
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.05/
%R 10.22436/jnsa.010.07.05
%G en
%F JNSA_2017_10_7_a4
Guo, Song; Du, Bo. Stochastic stability analysis  for a neutral-type neural networks with Markovian jumping parameters. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3409-3418. doi : 10.22436/jnsa.010.07.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.05/

[1] Arik, S. Global robust stability analysis of neural networks with discrete time delays, Chaos Solitons Fractals, Volume 26 (2005), pp. 1407-1414 | DOI

[2] Boyd, S.; Ghaoui, L. El; Feron, E.; Balakrishnan, V. Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994 | DOI

[3] Chen, H.-W.; He, Z.-M.; Li, J.-L. Multiplicity of solutions for impulsive differential equation on the half-line via variational methods, Bound. Value Probl., Volume 2016 (2016), pp. 1-15 | Zbl | DOI

[4] Gu, K. An integral inequality in the stability problem of time-delay systems, Proceedings of the 39th IEEE Conference on Decision and Control, Sydney Australia, Volume 3 (2000), pp. 2805-2810 | DOI

[5] Gui, Z.-J.; Ge, W.-G.; Yang, X.-S. Periodic oscillation for a Hopfield neural networks with neutral delays, Phys. Lett. A, Volume 364 (2007), pp. 267-273 | DOI | Zbl

[6] Kennedy, M. P.; Chua, L. O. Neural networks for nonlinear programming, IEEE Trans. Circuits and Systems, Volume 35 (1988), pp. 554-562 | DOI

[7] Liu, Y.-R.; Wang, Z.-D.; Liu, X.-H. Exponential synchronization of complex networks with Markovian jump and mixed delays, Phys. Lett. A, Volume 372 (2008), pp. 3986-3998 | DOI | Zbl

[8] Liu, Y.-R.; Wang, Z.-D.; Liu, X.-H. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. Lett. A, Volume 372 (2008), pp. 7147-7155 | Zbl | DOI

[9] Mou, S.-S.; Gao, H.-J.; Lam, J.; Qiang, W.-Y. A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay, IEEE Trans. Neural Netw., Volume 19 (2008), pp. 532-535 | DOI

[10] Pan, J.; Liu, X.-Z.; Xie, W. -C. Exponential stability of a class of complex-valued neural networks with time-varying delays, Neurocomputing, Volume 164 (2015), pp. 293-299 | DOI

[11] Park, J. H.; Park, C. H.; Kwon, O. M.; Lee, S. M. A new stability criterion for bidirectional associative memory neural networks of neutral-type, Appl. Math. Comput., Volume 199 (2008), pp. 716-722 | Zbl | DOI

[12] Rakkiyappan, R.; Balasubramaniam, P.; Cao, J.-D. Global exponential stability results for neutral-type impulsive neural networks, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 122-130 | DOI

[13] Slotine, J. E.; Li, W.-P. Applied nonlinear control, Prentice-Hall, Englewood Cliffs, New Jersey, 1991

[14] Wang, Z.-D.; Liu, Y.-R.; Liu, X.-H. State estimation for jumping recurrent neural networks with discrete and distributed delays, Neural Netw., Volume 22 (2009), pp. 41-48 | Zbl | DOI

[15] Xia, Z.-H.; Wang, X.-H.; Sun, X.-M.; Wang, Q. A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data, IEEE Trans. Parallel Distrib. Syst., Volume 27 (2015), pp. 340-352 | DOI

[16] Xu, Y.; He, Z.-M. Exponential stability of neutral stochastic delay differential equations with Markovian switching, Appl. Math. Lett., Volume 52 (2016), pp. 64-73 | DOI

[17] Yu, K.-W.; Lien, C.-H. Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos Solitons Fractals, Volume 38 (2008), pp. 650-657 | DOI

[18] Zhao, J.; Hill, D. J.; Liu, T. Global bounded synchronization of general dynamical networks with nonidentical nodes, IEEE Trans. Automat. Controll, Volume 57 (2012), pp. 2656-2662 | Zbl | DOI

Cité par Sources :