Sufficient conditions for ergodic sensitivity
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3404-3408.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this note, some sufficient conditions on the ergodic sensitivity of dynamical systems are obtained, improving the main results in [Q.-L. Huang, Y.-M. Shi, L.-J. Zhang, Appl. Math. Lett., 39 (2015), 31–34] and [R.-S. Li, Y.-M. Shi, Nonlinear Anal., 72 (2010), 2716–2720]. Moreover, it is proved that under these conditions, the second Lyapunov number of a dynamical system is equal to the diameter of its state space.
DOI : 10.22436/jnsa.010.07.04
Classification : 54H20, 74H65
Keywords: Sensitivity, ergodic sensitivity, Lyapunov number.

Wang, Xiong 1 ; Wu, Xinxing 2 ; Chen, Guanrong 3

1 Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong, P. R. China
2 School of Sciences, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
3 Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
@article{JNSA_2017_10_7_a3,
     author = {Wang, Xiong and Wu, Xinxing and Chen, Guanrong},
     title = {Sufficient conditions for ergodic sensitivity},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {3404-3408},
     publisher = {mathdoc},
     volume = {10},
     number = {7},
     year = {2017},
     doi = {10.22436/jnsa.010.07.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/}
}
TY  - JOUR
AU  - Wang, Xiong
AU  - Wu, Xinxing
AU  - Chen, Guanrong
TI  - Sufficient conditions for ergodic sensitivity
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 3404
EP  - 3408
VL  - 10
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/
DO  - 10.22436/jnsa.010.07.04
LA  - en
ID  - JNSA_2017_10_7_a3
ER  - 
%0 Journal Article
%A Wang, Xiong
%A Wu, Xinxing
%A Chen, Guanrong
%T Sufficient conditions for ergodic sensitivity
%J Journal of nonlinear sciences and its applications
%D 2017
%P 3404-3408
%V 10
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/
%R 10.22436/jnsa.010.07.04
%G en
%F JNSA_2017_10_7_a3
Wang, Xiong; Wu, Xinxing; Chen, Guanrong. Sufficient conditions for ergodic sensitivity. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3404-3408. doi : 10.22436/jnsa.010.07.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/

[1] Abraham, C.; Biau, G.; Cadre, B. Chaotic properties of mappings on a probability space, J. Math. Anal. Appl., Volume 266 (2002), pp. 420-431 | DOI | Zbl

[2] Auslander, J.; Yorke, J. A. Interval maps, factors of maps, and chaos, Tôhoku Math. J., Volume 32 (1980), pp. 177-188 | Zbl | DOI

[3] Banks, J.; Brooks, J.; Cairns, G.; Davis, G.; Stacey, P. On Devaney’s definition of chaos, Amer. Math. Monthly, Volume 99 (1992), pp. 332-334 | DOI

[4] Devaney, R. L. An introduction to chaotic dynamical systems, Second edition, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989

[5] Glasner, E.; Weiss, B. Sensitive dependence on initial conditions, Nonlinearity, Volume 6 (1993), pp. 1067-1075 | DOI

[6] Gu, R.-B. The large deviations theorem and ergodicity, Chaos Solitons Fractals, Volume 34 (2007), pp. 1387-1392 | DOI

[7] He, L.-F.; Yan, X.-H.; Wang, L.-S. Weak-mixing implies sensitive dependence, J. Math. Anal. Appl., Volume 299 (2004), pp. 300-304 | Zbl | DOI

[8] Huang, W.; Lu, P.; Ye, X.-D. Measure-theoretical sensitivity and equicontinuity, Israel J. Math., Volume 183 (2011), pp. 233-283 | DOI | Zbl

[9] Huang, Q.-L.; Shi, Y.-M.; Zhang, L.-J. Sensitivity of non-autonomous discrete dynamical systems, Appl. Math. Lett., Volume 39 (2015), pp. 31-34 | DOI

[10] Kolyada, S.; Rybak, O. On the Lyapunov numbers, Colloq. Math., Volume 131 (2013), pp. 209-218 | DOI

[11] Li, R.-S. The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 819-825 | DOI

[12] Li, R.-S.; Shi, Y.-M. Several sufficient conditions for sensitive dependence on initial conditions, Nonlinear Anal., Volume 72 (2010), pp. 2716-2720 | DOI | Zbl

[13] Li, T. Y.; Yorke, J. A. Period three implies chaos, Amer. Math. Monthly, Volume 82 (1975), pp. 985-992 | DOI

[14] Moothathu, T. K. S. Stronger forms of sensitivity for dynamical systems, Nonlinearity, Volume 20 (2007), pp. 2115-2126 | DOI

[15] Wu, X.-X. Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-12 | Zbl | DOI

[16] Wu, X.-X. A remark on topological sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (accepted) | DOI | Zbl

[17] Wu, X.-X.; Chen, G.-R. Sensitivity and transitivity of fuzzified dynamical systems, Inform. Sci., Volume 396 (2017), pp. 14-23 | DOI

[18] Wu, X.-X.; Oprocha, P.; Chen, G.-R. On various definitions of shadowing with average error in tracing, Nonlinearity, Volume 29 (2016), pp. 1942-1972 | DOI | Zbl

[19] Wu, X.-X.; Wang, X. On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-6 | DOI | Zbl

[20] Wu, X.-X.; Wang, J.-J.; Chen, G.-R. F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., Volume 429 (2015), pp. 16-26 | DOI | Zbl

[21] Wu, X.-X.; Wang, L.-D.; Chen, G.-R. Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal., Volume 8 (2017), pp. 199-210 | Zbl | DOI

[22] Yin, J.-D.; Zhou, Z.-L. Weakly almost periodic points and some chaotic properties of dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 25 (2015), pp. 1-10 | DOI | Zbl

Cité par Sources :