Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Xiong 1 ; Wu, Xinxing 2 ; Chen, Guanrong 3
@article{JNSA_2017_10_7_a3, author = {Wang, Xiong and Wu, Xinxing and Chen, Guanrong}, title = {Sufficient conditions for ergodic sensitivity}, journal = {Journal of nonlinear sciences and its applications}, pages = {3404-3408}, publisher = {mathdoc}, volume = {10}, number = {7}, year = {2017}, doi = {10.22436/jnsa.010.07.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/} }
TY - JOUR AU - Wang, Xiong AU - Wu, Xinxing AU - Chen, Guanrong TI - Sufficient conditions for ergodic sensitivity JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 3404 EP - 3408 VL - 10 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/ DO - 10.22436/jnsa.010.07.04 LA - en ID - JNSA_2017_10_7_a3 ER -
%0 Journal Article %A Wang, Xiong %A Wu, Xinxing %A Chen, Guanrong %T Sufficient conditions for ergodic sensitivity %J Journal of nonlinear sciences and its applications %D 2017 %P 3404-3408 %V 10 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/ %R 10.22436/jnsa.010.07.04 %G en %F JNSA_2017_10_7_a3
Wang, Xiong; Wu, Xinxing; Chen, Guanrong. Sufficient conditions for ergodic sensitivity. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 7, p. 3404-3408. doi : 10.22436/jnsa.010.07.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.07.04/
[1] Chaotic properties of mappings on a probability space, J. Math. Anal. Appl., Volume 266 (2002), pp. 420-431 | DOI | Zbl
[2] Interval maps, factors of maps, and chaos, Tôhoku Math. J., Volume 32 (1980), pp. 177-188 | Zbl | DOI
[3] On Devaney’s definition of chaos, Amer. Math. Monthly, Volume 99 (1992), pp. 332-334 | DOI
[4] An introduction to chaotic dynamical systems, Second edition, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989
[5] Sensitive dependence on initial conditions, Nonlinearity, Volume 6 (1993), pp. 1067-1075 | DOI
[6] The large deviations theorem and ergodicity, Chaos Solitons Fractals, Volume 34 (2007), pp. 1387-1392 | DOI
[7] Weak-mixing implies sensitive dependence, J. Math. Anal. Appl., Volume 299 (2004), pp. 300-304 | Zbl | DOI
[8] Measure-theoretical sensitivity and equicontinuity, Israel J. Math., Volume 183 (2011), pp. 233-283 | DOI | Zbl
[9] Sensitivity of non-autonomous discrete dynamical systems, Appl. Math. Lett., Volume 39 (2015), pp. 31-34 | DOI
[10] On the Lyapunov numbers, Colloq. Math., Volume 131 (2013), pp. 209-218 | DOI
[11] The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 819-825 | DOI
[12] Several sufficient conditions for sensitive dependence on initial conditions, Nonlinear Anal., Volume 72 (2010), pp. 2716-2720 | DOI | Zbl
[13] Period three implies chaos, Amer. Math. Monthly, Volume 82 (1975), pp. 985-992 | DOI
[14] Stronger forms of sensitivity for dynamical systems, Nonlinearity, Volume 20 (2007), pp. 2115-2126 | DOI
[15] Chaos of transformations induced onto the space of probability measures, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-12 | Zbl | DOI
[16] A remark on topological sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (accepted) | DOI | Zbl
[17] Sensitivity and transitivity of fuzzified dynamical systems, Inform. Sci., Volume 396 (2017), pp. 14-23 | DOI
[18] On various definitions of shadowing with average error in tracing, Nonlinearity, Volume 29 (2016), pp. 1942-1972 | DOI | Zbl
[19] On the iteration properties of large deviations theorem, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 26 (2016), pp. 1-6 | DOI | Zbl
[20] F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., Volume 429 (2015), pp. 16-26 | DOI | Zbl
[21] Weighted backward shift operators with invariant distributionally scrambled subsets, Ann. Funct. Anal., Volume 8 (2017), pp. 199-210 | Zbl | DOI
[22] Weakly almost periodic points and some chaotic properties of dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 25 (2015), pp. 1-10 | DOI | Zbl
Cité par Sources :