Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Yaqin 1 ; Kim, Tae-Hwa 2 ; Fang, Xiaoli 1 ; He, Huimin 3
@article{JNSA_2017_10_6_a11, author = {Wang, Yaqin and Kim, Tae-Hwa and Fang, Xiaoli and He, Huimin}, title = {The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {2976-2985}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.12/} }
TY - JOUR AU - Wang, Yaqin AU - Kim, Tae-Hwa AU - Fang, Xiaoli AU - He, Huimin TI - The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2976 EP - 2985 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.12/ DO - 10.22436/jnsa.010.06.12 LA - en ID - JNSA_2017_10_6_a11 ER -
%0 Journal Article %A Wang, Yaqin %A Kim, Tae-Hwa %A Fang, Xiaoli %A He, Huimin %T The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings %J Journal of nonlinear sciences and its applications %D 2017 %P 2976-2985 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.12/ %R 10.22436/jnsa.010.06.12 %G en %F JNSA_2017_10_6_a11
Wang, Yaqin; Kim, Tae-Hwa; Fang, Xiaoli; He, Huimin. The split common fixed-point problem for demicontractive mappings and quasi-nonexpansive mappings. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2976-2985. doi : 10.22436/jnsa.010.06.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.12/
[1] A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239 | Zbl | DOI
[2] The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600
[3] Damped projection method for split common fixed point problems, J. Inequal. Appl., Volume 2013 (2013), pp. 1-10 | DOI | Zbl
[4] Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1990 | DOI
[5] A strong convergence algorithm for the two-operator split common fixed point problem in Hilbert spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-8
[6] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | DOI | Zbl
[7] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | DOI
[8] The split common fixed-point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6 | DOI
[9] Simultaneous iterative algorithm for the split equality fixed-point problem of demicontractive mappings, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 154-165 | DOI
[10] Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 4105-4111 | Zbl | DOI
[11] Iterative algorithms for nonlinear operators, J. London Math. Soc., Volume 66 (2002), pp. 240-256 | DOI
[12] Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14 | DOI
[13] Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-12 | DOI | Zbl
[14] Regularized methods for the split feasibility problem, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-13 | DOI
Cité par Sources :