Voir la notice de l'article provenant de la source International Scientific Research Publications
Kim, Taekyun 1 ; Kim, Dae San 2 ; Kwon, Hyuck-In 3 ; Rim, Seog-Hoon 4
@article{JNSA_2017_10_6_a10, author = {Kim, Taekyun and Kim, Dae San and Kwon, Hyuck-In and Rim, Seog-Hoon}, title = {Some identities for umbral calculus associated with partially degenerate {Bell} numbers and polynomials}, journal = {Journal of nonlinear sciences and its applications}, pages = {2966-2975}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/} }
TY - JOUR AU - Kim, Taekyun AU - Kim, Dae San AU - Kwon, Hyuck-In AU - Rim, Seog-Hoon TI - Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2966 EP - 2975 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/ DO - 10.22436/jnsa.010.06.11 LA - en ID - JNSA_2017_10_6_a10 ER -
%0 Journal Article %A Kim, Taekyun %A Kim, Dae San %A Kwon, Hyuck-In %A Rim, Seog-Hoon %T Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials %J Journal of nonlinear sciences and its applications %D 2017 %P 2966-2975 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/ %R 10.22436/jnsa.010.06.11 %G en %F JNSA_2017_10_6_a10
Kim, Taekyun; Kim, Dae San; Kwon, Hyuck-In; Rim, Seog-Hoon. Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2966-2975. doi : 10.22436/jnsa.010.06.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/
[1] The arithmetic of Bell and Stirling numbers, Amer. J. Math., Volume 70 (1948), pp. 385-394 | DOI
[2] On Touchard polynomials, Canad. J. Math., Volume 9 (1957), pp. 191-193
[3] Congruences for generalized Bell and Stirling numbers, Duke Math. J., Volume 22 (1955), pp. 193-205 | DOI | Zbl
[4] Some polynomials of Touchard connected with the Bernoulli numbers, Canad. J. Math., Volume 9 (1957), pp. 188-190 | DOI | Zbl
[5] Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88 | Zbl
[6] Some remarks on the Bell numbers, Fibonacci Quart., Volume 18 (1980), pp. 66-73
[7] Some recursion formulae for the number of derangements and Bell numbers, J. Math. Res. Appl., Volume 36 (2016), pp. 15-22 | DOI | Zbl
[8] Some identities of Bell polynomials, J. Comput. Anal. Appl., Volume 20 (2016), pp. 584-589
[9] On some numbers from the Bell polynomials, Math. Japon., Volume 18 (1973), pp. 1-4
[10] Some identities of Bell polynomials, Sci. China Math., Volume 58 (2015), pp. 2095-2104 | DOI
[11] Umbral calculus associated with Bernoulli polynomials, J. Number Theory, Volume 147 (2015), pp. 871-882 | DOI
[12] On degenerate Bell numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fııs. Nat. Ser. A Math. RACSAM, Volume 111 (2017), pp. 435-446 | Zbl | DOI
[13] On partially degenerate Bell numbers and polynomials, Proc. Jangjeon Math. Soc., Volume 20 (2017), pp. 337-345 | DOI | Zbl
[14] Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys., Volume 21 (2014), pp. 484-493 | Zbl | DOI
[15] Some identities of Bell polynomials associated with p-adic integral on \(\mathbb{Z}_p\), J. Comput. Anal. Appl., Volume 20 (2016), pp. 437-446 | Zbl
[16] The umbral calculus, Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984
[17] On some polynomials of Touchard, Canad. J. Math., Volume 8 (1956), pp. 321-322 | DOI
Cité par Sources :