Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2966-2975.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study partially degenerate Bell numbers and polynomials by using umbral calculus. We give some new identities for these numbers and polynomials which are associated with special numbers and polynomial.
DOI : 10.22436/jnsa.010.06.11
Classification : 05A19, 05A40, 11B83
Keywords: Partially degenerate Bell polynomials, umbral calculus.

Kim, Taekyun 1 ; Kim, Dae San 2 ; Kwon, Hyuck-In 3 ; Rim, Seog-Hoon 4

1 Department of Mathematics, College of Science Tianjin Polytechnic University, Tianjin 300160, China;Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
2 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
3 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
4 Department of Mathematics Education, Kyungpook National University, Taegu 702-701, Republic of Korea
@article{JNSA_2017_10_6_a10,
     author = {Kim, Taekyun and Kim, Dae San and Kwon, Hyuck-In and Rim, Seog-Hoon},
     title = {Some identities for umbral calculus associated with partially degenerate {Bell} numbers and polynomials},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2966-2975},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/}
}
TY  - JOUR
AU  - Kim, Taekyun
AU  - Kim, Dae San
AU  - Kwon, Hyuck-In
AU  - Rim, Seog-Hoon
TI  - Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2966
EP  - 2975
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/
DO  - 10.22436/jnsa.010.06.11
LA  - en
ID  - JNSA_2017_10_6_a10
ER  - 
%0 Journal Article
%A Kim, Taekyun
%A Kim, Dae San
%A Kwon, Hyuck-In
%A Rim, Seog-Hoon
%T Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2966-2975
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/
%R 10.22436/jnsa.010.06.11
%G en
%F JNSA_2017_10_6_a10
Kim, Taekyun; Kim, Dae San; Kwon, Hyuck-In; Rim, Seog-Hoon. Some identities for umbral calculus associated with partially degenerate Bell numbers and polynomials. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2966-2975. doi : 10.22436/jnsa.010.06.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.11/

[1] Becker, H. W.; Riordan, J. The arithmetic of Bell and Stirling numbers, Amer. J. Math., Volume 70 (1948), pp. 385-394 | DOI

[2] Brafman, F. On Touchard polynomials, Canad. J. Math., Volume 9 (1957), pp. 191-193

[3] Carlitz, L. Congruences for generalized Bell and Stirling numbers, Duke Math. J., Volume 22 (1955), pp. 193-205 | DOI | Zbl

[4] Carlitz, L. Some polynomials of Touchard connected with the Bernoulli numbers, Canad. J. Math., Volume 9 (1957), pp. 188-190 | DOI | Zbl

[5] Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88 | Zbl

[6] Carlitz, L. Some remarks on the Bell numbers, Fibonacci Quart., Volume 18 (1980), pp. 66-73

[7] He, Y.; Pan, J. Some recursion formulae for the number of derangements and Bell numbers, J. Math. Res. Appl., Volume 36 (2016), pp. 15-22 | DOI | Zbl

[8] Jang, L.-C.; Kim, T. Some identities of Bell polynomials, J. Comput. Anal. Appl., Volume 20 (2016), pp. 584-589

[9] Kim, J. B. On some numbers from the Bell polynomials, Math. Japon., Volume 18 (1973), pp. 1-4

[10] Kim, D. S.; Kim, T. Some identities of Bell polynomials, Sci. China Math., Volume 58 (2015), pp. 2095-2104 | DOI

[11] Kim, D. S.; Kim, T. Umbral calculus associated with Bernoulli polynomials, J. Number Theory, Volume 147 (2015), pp. 871-882 | DOI

[12] Kim, D. S.; Kim, T. On degenerate Bell numbers and polynomials, Rev. R. Acad. Cienc. Exactas Fııs. Nat. Ser. A Math. RACSAM, Volume 111 (2017), pp. 435-446 | Zbl | DOI

[13] Kim, D. S.; Kim, T.; Dolgy, D. V. On partially degenerate Bell numbers and polynomials, Proc. Jangjeon Math. Soc., Volume 20 (2017), pp. 337-345 | DOI | Zbl

[14] Kim, T.; Mansour, T. Umbral calculus associated with Frobenius-type Eulerian polynomials, Russ. J. Math. Phys., Volume 21 (2014), pp. 484-493 | Zbl | DOI

[15] Rim, S.-H.; Pak, H. K.; Kwon, J. K.; Kim, T. G. Some identities of Bell polynomials associated with p-adic integral on \(\mathbb{Z}_p\), J. Comput. Anal. Appl., Volume 20 (2016), pp. 437-446 | Zbl

[16] Roman, S. The umbral calculus, Pure and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984

[17] Wyman, M.; Moser, L. On some polynomials of Touchard, Canad. J. Math., Volume 8 (1956), pp. 321-322 | DOI

Cité par Sources :