Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhao, Hengjun 1
@article{JNSA_2017_10_6_a9, author = {Zhao, Hengjun}, title = {A composite iterative algorithm for accretive and nonexpansive operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {2957-2965}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.10/} }
TY - JOUR AU - Zhao, Hengjun TI - A composite iterative algorithm for accretive and nonexpansive operators JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2957 EP - 2965 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.10/ DO - 10.22436/jnsa.010.06.10 LA - en ID - JNSA_2017_10_6_a9 ER -
%0 Journal Article %A Zhao, Hengjun %T A composite iterative algorithm for accretive and nonexpansive operators %J Journal of nonlinear sciences and its applications %D 2017 %P 2957-2965 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.10/ %R 10.22436/jnsa.010.06.10 %G en %F JNSA_2017_10_6_a9
Zhao, Hengjun. A composite iterative algorithm for accretive and nonexpansive operators. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2957-2965. doi : 10.22436/jnsa.010.06.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.10/
[1] Expanding the applicability of the generalized Newton method for generalized equations, Commun. Optim. Theory, Volume 2017 (2017), pp. 1-12
[2] A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14 | DOI | Zbl
[3] Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336 | Zbl
[4] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[5] Existence and approximation of solutions of nonlinear variational inequalities, Proc. Nat. Acad. Sci. U.S.A., Volume 56 (1966), pp. 1080-1086 | DOI
[6] A strongly convergent iterative solution of \(0 \in U(x)\) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., Volume 48 (1974), pp. 114-126 | Zbl | DOI
[7] Weak convergence of a splitting algorithm in Hilbert spaces, J. Appl. Anal. Comput., Volume 7 (2017), pp. 427-438
[8] Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15 | DOI | Zbl
[9] The convex feasibility problem in image recovery, Adv. Imag. Elect. Phys., Volume 95 (1996), pp. 155-270 | DOI
[10] Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., Volume 4 (2005), pp. 1168-1200 | DOI | Zbl
[11] Viscosity iterative methods for split variational inclusion problems and fixed point problems of a nonexpansive mapping, Commun. Optim. Theory, Volume 2016 (2016), pp. 1-15
[12] Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., Volume 43 (2001), pp. 377-401 | DOI
[13] Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, Volume 106 (2000), pp. 226-240 | DOI
[14] Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, Volume 19 (1967), pp. 508-520 | DOI
[15] Image recovery by convex combinations of sunny nonexpansive retractions, Topol. Methods Nonlinear Anal., Volume 2 (1993), pp. 333-342 | Zbl | DOI
[16] An iterative method for zeros of accretive mappings in Banach spaces, J. Nonlinear Funct. Anal., Volume 2016 (2016), pp. 1-17
[17] Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI
[18] A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-10 | Zbl | DOI
[19] Weak convergence of a Mann-like algorithm for nonexpansive and accretive operators, J. Inequal. Appl., Volume 2016 (2016), pp. 1-9 | Zbl | DOI
[20] Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., Volume 75 (1980), pp. 287-292 | DOI
[21] Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., Volume 1 (1976), pp. 97-116 | DOI | Zbl
[22] Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., Volume 147 (2010), pp. 27-41 | DOI
[23] Inequalities in Banach spaces with applications, Nonlinear Anal., Volume 16 (1991), pp. 1127-1138 | DOI
[24] Iterative algorithms for common elements in fixed point sets and zero point sets with applications, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-14 | DOI | Zbl
Cité par Sources :