Coupled best approximation theorems for discontinuous operators in partially ordered Banach spaces
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2946-2956.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we first discuss properties of the cone in normed product spaces. As applications, we then derive some coupled best approximation and coupled coincidence best approximation point results for discontinuous operators in partially ordered Banach spaces. Some of our results generalize those obtained in earlier work.
DOI : 10.22436/jnsa.010.06.09
Classification : 41A65, 47H07, 06B30
Keywords: Coupled fixed point, best approximation, metric projection, discontinuous operator, mixed monotone, Banach space.

Kong, Dezhou 1 ; Liu, Lishan 2 ; Wu, Yonghong 3

1 College of Information Science and Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China;School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
2 School of Mathematical Sciences, Qufu Normal University, Qufu, 273165, Shandong, China;Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia
3 Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia
@article{JNSA_2017_10_6_a8,
     author = {Kong, Dezhou and Liu, Lishan and Wu, Yonghong},
     title = {Coupled best approximation theorems for discontinuous operators in partially ordered {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2946-2956},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.09/}
}
TY  - JOUR
AU  - Kong, Dezhou
AU  - Liu, Lishan
AU  - Wu, Yonghong
TI  - Coupled best approximation theorems for discontinuous operators in partially ordered Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2946
EP  - 2956
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.09/
DO  - 10.22436/jnsa.010.06.09
LA  - en
ID  - JNSA_2017_10_6_a8
ER  - 
%0 Journal Article
%A Kong, Dezhou
%A Liu, Lishan
%A Wu, Yonghong
%T Coupled best approximation theorems for discontinuous operators in partially ordered Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2946-2956
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.09/
%R 10.22436/jnsa.010.06.09
%G en
%F JNSA_2017_10_6_a8
Kong, Dezhou; Liu, Lishan; Wu, Yonghong. Coupled best approximation theorems for discontinuous operators in partially ordered Banach spaces. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2946-2956. doi : 10.22436/jnsa.010.06.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.09/

[1] Alber, Y. Metric and generalized projection operators in Banach spaces: properties and applications, Theory and applications of nonlinear operators of accretive and monotone type, Lecture Notes in Pure and Appl. Math., Dekker, New York, Volume 178 (1996), pp. 15-50 | Zbl

[2] Amini-Harandi, A. Best and coupled best approximation theorems in abstract convex metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 922-926 | DOI | Zbl

[3] Fan, K. Extensions of two fixed point theorems of F. E. Browder, Math. Z., Volume 112 (1969), pp. 234-240 | DOI | Zbl

[4] Bhaskar, T. Gnana; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., Volume 65 (2006), pp. 1379-1393 | DOI

[5] Guo, D.-J.; Cho, Y. J.; Zhu, J. Partial ordering methods in nonlinear problems, Nova Science Publishers, Inc., Hauppauge, NY, 2004

[6] Guo, D.-J.; Lakshmikantham, V. Nonlinear problems in abstract cones, Notes and Reports in Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1988

[7] Jleli, M.; Samet, B. Remarks on the paper: Best proximity point theorems: an exploration of a common solution to approximation and optimization problems, Appl. Math. Comput., Volume 228 (2014), pp. 366-370 | DOI | Zbl

[8] Kong, D.-Z.; Liu, L.-S.; Y.-H.Wu Best approximation and fixed-point theorems for discontinuous increasing maps in Banach lattices, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-10 | DOI | Zbl

[9] Kong, D.-Z.; Liu, L.-S.; Wu, Y.-H. The best approximation theorems and fixed point theorems for discontinuous increasing mappings in Banach spaces, Abstr. Appl. Anal., Volume 2015 (2015), pp. 1-7

[10] Kong, D.-Z.; Liu, L.-S.; Wu, Y.-H. Isotonicity of the metric projection with applications to variational inequalities and fixed point theory in Banach spaces, J. Fixed Point Theory Appl., Volume 2016 (2016), pp. 1889-1903 | Zbl | DOI

[11] Kong, D.-Z.; Liu, L.-S.; Y.-H.Wu Isotonicity of the metric projection by Lorentz cone and variational inequalities, J. Optim. Theory Appl., Volume 173 (2017), pp. 117-130 | Zbl | DOI

[12] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal., Volume 70 (2009), pp. 4341-4349

[13] Li, J.-L.; Ok, E. A. Optimal solutions to variational inequalities on Banach lattices, J. Math. Anal. Appl., Volume 388 (2012), pp. 1157-1165 | DOI | Zbl

[14] Lin, T.-C.; Park, S.-H. Approximation and fixed-point theorems for condensing composites of multifunctions, J. Math. Anal. Appl., Volume 233 (1998), pp. 1-8 | DOI | Zbl

[15] L.-S. Liu On approximation theorems and fixed point theorems for non-self-mappings in infinite-dimensional Banach spaces, J. Math. Anal. Appl., Volume 188 (1994), pp. 541-551 | Zbl | DOI

[16] Liu, L.-S. Random approximations and random fixed point theorems in infinite-dimensional Banach spaces, Indian J. Pure Appl. Math., Volume 28 (1997), pp. 139-150 | Zbl

[17] Liu, L.-S. Some random approximations and random fixed point theorems for 1-set-contractive random operators, Proc. Amer. Math. Soc., Volume 125 (1997), pp. 515-521 | DOI | Zbl

[18] Liu, L.-S. Random approximations and random fixed point theorems for random 1-set-contractive non-self-maps in abstract cones, Stochastic Anal. Appl., Volume 18 (2000), pp. 125-144 | Zbl | DOI

[19] Liu, L.-S. Approximation theorems and fixed point theorems for various classes of 1-set-contractive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.), Volume 17 (2001), pp. 103-112 | Zbl | DOI

[20] Liu, L.-S.; Kong, D.-Z.; Wu, Y.-H. The best approximation theorems and variational inequalities for discontinuous mappings in Banach spaces, Sci. China Math., Volume 58 (2015), pp. 2581-2592 | DOI | Zbl

[21] Markin, J.; Shahzad, N. Best approximation theorems for nonexpansive and condensing mappings in hyperconvex spaces, Nonlinear Anal., Volume 70 (2009), pp. 2435-2441 | Zbl | DOI

[22] Mitrović, Z. D. A coupled best approximations theorem in normed spaces, Nonlinear Anal., Volume 72 (2010), pp. 4049-4052 | Zbl | DOI

[23] Basha, S. Sadiq Best proximity point theorems: an exploration of a common solution to approximation and optimization problems, Appl. Math. Comput., Volume 218 (2012), pp. 9773-9780 | DOI | Zbl

[24] Basha, S. Sadiq; Shahzad, N. Common best proximity point theorems: global minimization of some real-valued multiobjective functions, J. Fixed Point Theory Appl., Volume 18 (2016), pp. 587-600 | Zbl | DOI

[25] Shahzad, N. Fixed point and approximation results for multimaps in S-KKM class, Nonlinear Anal., Volume 56 (2004), pp. 905-918 | DOI | Zbl

[26] Zălinescu, C. Convex analysis in general vector spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 2002 | DOI

Cité par Sources :