Optimal approximate solution theorems for Geraghty's proximal contractions in partially ordered sets via w-distances
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2934-2945.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to solve some global optimization problems for Geraghty type proximal contractions in the setting of partially ordered sets with a metric by using a w-distance and an algorithm for determining such an optimal approximate solution, also, we give some examples to illustrate our main results.
DOI : 10.22436/jnsa.010.06.08
Classification : 47H09, 47H10, 54H25
Keywords: Optimal approximate solution, best proximity point, Geraghty’s proximal contraction, generalized distances, w-distance.

Mongkolkeha, Chirasak 1 ; Kim, Eunyoung 2 ; Cho, Yeol Je 3

1 Department of Mathematics, Statistics and Computer Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng-Saen Campus, Nakhonpathom 73140, Thailand
2 Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju 660-701, Korea
3 Department of Mathematics Education and the RINS, Gyeongsang National University, Jinju 660-701, Korea;Center for General Education, China Medical University, Taichung, 40402, Taiwan
@article{JNSA_2017_10_6_a7,
     author = {Mongkolkeha, Chirasak and Kim, Eunyoung and Cho, Yeol Je},
     title = {Optimal approximate solution theorems for {Geraghty's} proximal contractions in partially ordered sets via w-distances},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2934-2945},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.08/}
}
TY  - JOUR
AU  - Mongkolkeha, Chirasak
AU  - Kim, Eunyoung
AU  - Cho, Yeol Je
TI  - Optimal approximate solution theorems for Geraghty's proximal contractions in partially ordered sets via w-distances
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2934
EP  - 2945
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.08/
DO  - 10.22436/jnsa.010.06.08
LA  - en
ID  - JNSA_2017_10_6_a7
ER  - 
%0 Journal Article
%A Mongkolkeha, Chirasak
%A Kim, Eunyoung
%A Cho, Yeol Je
%T Optimal approximate solution theorems for Geraghty's proximal contractions in partially ordered sets via w-distances
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2934-2945
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.08/
%R 10.22436/jnsa.010.06.08
%G en
%F JNSA_2017_10_6_a7
Mongkolkeha, Chirasak; Kim, Eunyoung; Cho, Yeol Je. Optimal approximate solution theorems for Geraghty's proximal contractions in partially ordered sets via w-distances. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2934-2945. doi : 10.22436/jnsa.010.06.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.08/

[1] Basha, S. S. Discrete optimization in partially ordered sets, J. Global Optim., Volume 54 (2012), pp. 511-517 | DOI

[2] Caballero, J.; Harjani, J.; Sadarangani, K. A best proximity point theorem for Geraghty-contractions, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-9 | DOI | Zbl

[3] Cho, Y. J.; Gupta, A.; Karapınar, E.; Kumam, P.; W. Sintunavarat Tripled best proximity point theorem in metric spaces, Math. Inequal. Appl., Volume 16 (2013), pp. 1197-1216 | Zbl

[4] Fan, K. Extensions of two fixed point theorems of F. E. Browder, Math. Z., Volume 112 (1969), pp. 234-240 | DOI | Zbl

[5] Geraghty, M. A. On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI

[6] Imdad, M.; Rouzkard, F. Fixed point theorems in ordered metric spaces via w-distances, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-17 | DOI

[7] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., Volume 44 (1996), pp. 381-391

[8] Karapınar, E. Best proximity points of cyclic mappings , Appl. Math. Lett., Volume 25 (2012), pp. 1761-1766 | DOI

[9] Karapınar, E.; Sintunavarat, W. The existence of optimal approximate solution theorems for generalized \(\alpha\)-proximal contraction non-self mappings and applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-21 | DOI | Zbl

[10] Mongkolkeha, C.; Cho, Y. J.; Kumam, P. Best proximity points for Geraghty’s proximal contraction mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-17 | DOI | Zbl

[11] Mongkolkeha, C.; Kumam, P. Best proximity point theorems for generalized cyclic contractions in ordered metric spaces, J. Optim. Theory Appl., Volume 155 (2012), pp. 215-226 | DOI | Zbl

[12] Mongkolkeha, C.; Kumam, P. Some common best proximity points for proximity commuting mappings, Optim. Lett., Volume 7 (2013), pp. 1825-1836 | DOI

[13] Nieto, J. J.; Rodríguez-López, R. Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239 | DOI | Zbl

[14] Prolla, J. B. Fixed-point theorems for set-valued mappings and existence of best approximants, Numer. Funct. Anal. Optim., Volume 5 (1983), pp. 449-455 | Zbl | DOI

[15] Reich, S. Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl., Volume 62 (1978), pp. 104-113 | DOI | Zbl

[16] Sehgal, V. M.; Singh, S. P. A generalization to multifunctions of Fan’s best approximation theorem, Proc. Amer. Math. Soc., Volume 102 (1988), pp. 534-537 | Zbl | DOI

[17] Sehgal, V. M.; Singh, S. P. A theorem on best approximations, Numer. Funct. Anal. Optim., Volume 10 (1989), pp. 181-184 | DOI

[18] Shioji, N.; Suzuki, T.; Takahashi, W. Contractive mappings, Kannan mappings and metric completeness, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3117-3124 | DOI | Zbl

[19] Sintunavarat, W.; Kumam, P. Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-16 | DOI | Zbl

[20] Takahashi, W. Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed point theory and applications, Marseille, (1989), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, Volume 252 (1991), pp. 397-406 | DOI

[21] Takahashi, W. Nonlinear functional analysis, Fixed point theory and its applications, Yokohama Publishers, Yokohama, 2000

Cité par Sources :