Resolvent dynamical systems and mixed variational inequalities
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2925-2933.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we use the dynamical systems technique to suggest and investigate some inertial proximal methods for solving mixed variational inequalities and related optimization problems. It is proved that the convergence analysis of the proposed methods requires only the monotonicity. Some special cases are also considered. Our method of proof is very simple as compared with other techniques. Ideas and techniques of this paper may be extended for other classes of variational inequalities and equilibrium problems.
DOI : 10.22436/jnsa.010.06.07
Classification : 26D15, 26D10, 90C23, 49J40
Keywords: Variational inequalities, dynamical systems, inertial proximal methods, convergence.

Bin-Mohsin, Bandar 1 ; Noor, Muhammad Aslam 2 ; Noor, Khalida Inayat 3 ; Latif, Rafia 3

1 Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
2 Department of Mathematics, King Saud University, Riyadh, Saudi Arabia;Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
3 Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan
@article{JNSA_2017_10_6_a6,
     author = {Bin-Mohsin, Bandar and Noor, Muhammad Aslam and Noor, Khalida Inayat and Latif, Rafia},
     title = {Resolvent dynamical systems and mixed variational inequalities},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2925-2933},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/}
}
TY  - JOUR
AU  - Bin-Mohsin, Bandar
AU  - Noor, Muhammad Aslam
AU  - Noor, Khalida Inayat
AU  - Latif, Rafia
TI  - Resolvent dynamical systems and mixed variational inequalities
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2925
EP  - 2933
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/
DO  - 10.22436/jnsa.010.06.07
LA  - en
ID  - JNSA_2017_10_6_a6
ER  - 
%0 Journal Article
%A Bin-Mohsin, Bandar
%A Noor, Muhammad Aslam
%A Noor, Khalida Inayat
%A Latif, Rafia
%T Resolvent dynamical systems and mixed variational inequalities
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2925-2933
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/
%R 10.22436/jnsa.010.06.07
%G en
%F JNSA_2017_10_6_a6
Bin-Mohsin, Bandar; Noor, Muhammad Aslam; Noor, Khalida Inayat; Latif, Rafia. Resolvent dynamical systems and mixed variational inequalities. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2925-2933. doi : 10.22436/jnsa.010.06.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/

[1] Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping , Wellposedness in optimization and related topics, Gargnano, (1999), Set-Valued Anal., Volume 9 (2001), pp. 3-11 | DOI | Zbl

[2] Antipin, A. S.; Mijajlovic, N.; Jacimovic, M. A second-order iterative method for solving quasi-variational inequalities, (Russian); translated from Zh. Vychisl. Mat. Mat. Fiz., 53 (2013), 336–342, Comput. Math. Math. Phys., Volume 53 (2013), pp. 258-264 | DOI | Zbl

[3] Antipin, A. S.; Miyaĭlovich, N.; Yachimovich, M. A second-order continuous method for solving quasi-variational inequalities, (Russian); translated from Zh. Vychisl. Mat. Mat. Fiz., 51 (2011), 1973–1980, Comput. Math. Math. Phys., Volume 51 (2011), pp. 1856-1863 | DOI

[4] Baiocchi, C.; Capelo, A. C. Variational and quasivariational inequalities: Applications to free boundary problems, John Wiley & Sons, Inc., New York, 1984 | Zbl

[5] Bin-Mohsin, B.; B; Noor, M. A.; Noor, K. I.; Latif, R. Strongly mixed variational inequalities and dynamical systems, Preprint, , 2017

[6] Chen, C.-H.; Ma, S.-Q.; Yang, J.-F. A general inertial proximal point algorithm for mixed variational inequality problem, SIAM J. Optim., Volume 25 (2015), pp. 2120-2142 | Zbl | DOI

[7] Dong, J.; Zhang, D.; Nagurney, A. A projected dynamical systems model of general financial equilibrium with stability analysis, Math. Comput. Modelling, Volume 24 (1996), pp. 35-44 | Zbl | DOI

[8] Dupuis, P.; Nagurney, A. Dynamical systems and variational inequalities, Advances in equilibrium modeling, analysis and computation, Ann. Oper. Res., Volume 44 (1993), pp. 7-42 | DOI

[9] Friesz, T. L.; Bernstein, D.; Mehta, N. J.; Tobin, R. L.; Ganjalizadeh, S. Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., Volume 42 (1994), pp. 1120-1136 | Zbl | DOI

[10] Friesz, T. L.; Bernstein, D.; Stough, R. Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Transport. Sci., Volume 30 (1996), pp. 14-31 | Zbl | DOI

[11] Giannessi, F.; Maugeri, A. Variational inequalities and network equilibrium problems, Plenum Press, New York, 1995 | DOI

[12] Goeleven, D. Existence and uniqueness for a linear mixed variational inequality arising in electrical circuits with transistors, J. Optim. Theory Appl., Volume 138 (2008), pp. 397-406 | DOI | Zbl

[13] Kinderlehrer, D.; Stampacchia, G. An introduction to variational inequalities and their applications, Reprint of the 1980 original, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000 | DOI

[14] Korpelevich, G. M. The extragradient method for finding saddle points and other problems, Metekon, Volume 12 (1976), pp. 747-756

[15] Maingé, P. E.; Gobinddass, M. L. Convergence of one-step projected gradient methods for variational inequalities, J. Optim. Theory Appl., Volume 171 (2016), pp. 146-168 | Zbl | DOI

[16] Mijajlović, N.; Ja´cimović, M. A proximal method for solving quasi-variational inequalities, Comput. Math. Math. phys., Volume 55 (2015), pp. 1981-1985 | Zbl | DOI

[17] Milovanović, G. V.; (Eds.), M. T. Rassias Analytic number theory, approximation theory, and special functions, In honor of Hari M. Srivastava, Springer, New York, 2014 | DOI

[18] Nagurney, A.; Zhang, D. Projected dynamical systems and variational inequalities with applications, First edition, Kluwer Academic Publishers, New York, 1996

[19] Nash, J. F.; Jr.; (Eds.), M. T. Rassias Open problems in mathematics, Springer, Cham, 2016 | DOI

[20] Noor, M. A. A Wiener-Hopf dynamical system for variational inequalities, New Zealand J. Math., Volume 31 (2002), pp. 173-182

[21] Noor, M. A. Resolvent dynamical systems for mixed variational inequalities, Korean J. Comput. Appl. Math., Volume 9 (2002), pp. 15-26

[22] Noor, M. A. Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput., Volume 134 (2003), pp. 69-81 | DOI

[23] Noor, M. A. Fundamentals of mixed quasi variational inequalities, Int. J. Pure Appl. Math., Volume 15 (2004), pp. 137-258 | Zbl

[24] Noor, M. A. Some developments in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277 | DOI

[25] Noor, M. A.; Akhtar, M.; Noor, K. I. Inertial proximal method for mixed quasi variational inequalities, Nonlinear Funct. Anal. Appl., Volume 8 (2003), pp. 489-496 | Zbl

[26] Noor, M. A.; Noor, K. I.; Rassias, T. M. Some aspects of variational inequalities, J. Comput. Appl. Math., Volume 47 (1993), pp. 285-312 | DOI

[27] Patriksson, M. Nonlinear programming and variational inequalities: a unified approach, Kluwer Academic Publishers, Dordrecht , Holland, 1998

[28] Ryazantseva, I. P. First-order methods for certain quasi-variational inequalities in a Hilbert space, Comput. Math. Math. Phys., Volume 47 (2007), pp. 183-190 | Zbl | DOI

[29] Ryazantseva, I. P. Second-order methods for some quasi-variational inequalities, (Russian); translated from Differ. Uravn., 44 (2008), 976–987, Differ. Equ., Volume 44 (2008), pp. 1006-1017 | DOI

[30] Stampacchia, G. Formes bilinaires coercitives sur les ensembles convexes, (French) C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416

[31] Xia, Y.-S.; Wang, J. A recurrent neural network for solving linear projection equations, Neural Netw., Volume 13 (2000), pp. 337-350 | DOI

[32] Xia, Y.-S.; J.Wang On the stability of globally projected dynamical systems, J. Optim. Theory Appl., Volume 106 (2000), pp. 129-150 | DOI

[33] Zhang, D.; Nagurney, A. On the stability of projected dynamical systems, J. Optim. Theory Appl., Volume 85 (1995), pp. 97-124 | DOI

Cité par Sources :