Voir la notice de l'article provenant de la source International Scientific Research Publications
Bin-Mohsin, Bandar 1 ; Noor, Muhammad Aslam 2 ; Noor, Khalida Inayat 3 ; Latif, Rafia 3
@article{JNSA_2017_10_6_a6, author = {Bin-Mohsin, Bandar and Noor, Muhammad Aslam and Noor, Khalida Inayat and Latif, Rafia}, title = {Resolvent dynamical systems and mixed variational inequalities}, journal = {Journal of nonlinear sciences and its applications}, pages = {2925-2933}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/} }
TY - JOUR AU - Bin-Mohsin, Bandar AU - Noor, Muhammad Aslam AU - Noor, Khalida Inayat AU - Latif, Rafia TI - Resolvent dynamical systems and mixed variational inequalities JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2925 EP - 2933 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/ DO - 10.22436/jnsa.010.06.07 LA - en ID - JNSA_2017_10_6_a6 ER -
%0 Journal Article %A Bin-Mohsin, Bandar %A Noor, Muhammad Aslam %A Noor, Khalida Inayat %A Latif, Rafia %T Resolvent dynamical systems and mixed variational inequalities %J Journal of nonlinear sciences and its applications %D 2017 %P 2925-2933 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/ %R 10.22436/jnsa.010.06.07 %G en %F JNSA_2017_10_6_a6
Bin-Mohsin, Bandar; Noor, Muhammad Aslam; Noor, Khalida Inayat; Latif, Rafia. Resolvent dynamical systems and mixed variational inequalities. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2925-2933. doi : 10.22436/jnsa.010.06.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.07/
[1] An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping , Wellposedness in optimization and related topics, Gargnano, (1999), Set-Valued Anal., Volume 9 (2001), pp. 3-11 | DOI | Zbl
[2] A second-order iterative method for solving quasi-variational inequalities, (Russian); translated from Zh. Vychisl. Mat. Mat. Fiz., 53 (2013), 336–342, Comput. Math. Math. Phys., Volume 53 (2013), pp. 258-264 | DOI | Zbl
[3] A second-order continuous method for solving quasi-variational inequalities, (Russian); translated from Zh. Vychisl. Mat. Mat. Fiz., 51 (2011), 1973–1980, Comput. Math. Math. Phys., Volume 51 (2011), pp. 1856-1863 | DOI
[4] Variational and quasivariational inequalities: Applications to free boundary problems, John Wiley & Sons, Inc., New York, 1984 | Zbl
[5] Strongly mixed variational inequalities and dynamical systems, Preprint, , 2017
[6] A general inertial proximal point algorithm for mixed variational inequality problem, SIAM J. Optim., Volume 25 (2015), pp. 2120-2142 | Zbl | DOI
[7] A projected dynamical systems model of general financial equilibrium with stability analysis, Math. Comput. Modelling, Volume 24 (1996), pp. 35-44 | Zbl | DOI
[8] Dynamical systems and variational inequalities, Advances in equilibrium modeling, analysis and computation, Ann. Oper. Res., Volume 44 (1993), pp. 7-42 | DOI
[9] Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., Volume 42 (1994), pp. 1120-1136 | Zbl | DOI
[10] Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Transport. Sci., Volume 30 (1996), pp. 14-31 | Zbl | DOI
[11] Variational inequalities and network equilibrium problems, Plenum Press, New York, 1995 | DOI
[12] Existence and uniqueness for a linear mixed variational inequality arising in electrical circuits with transistors, J. Optim. Theory Appl., Volume 138 (2008), pp. 397-406 | DOI | Zbl
[13] An introduction to variational inequalities and their applications, Reprint of the 1980 original, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000 | DOI
[14] The extragradient method for finding saddle points and other problems, Metekon, Volume 12 (1976), pp. 747-756
[15] Convergence of one-step projected gradient methods for variational inequalities, J. Optim. Theory Appl., Volume 171 (2016), pp. 146-168 | Zbl | DOI
[16] A proximal method for solving quasi-variational inequalities, Comput. Math. Math. phys., Volume 55 (2015), pp. 1981-1985 | Zbl | DOI
[17] Analytic number theory, approximation theory, and special functions, In honor of Hari M. Srivastava, Springer, New York, 2014 | DOI
[18] Projected dynamical systems and variational inequalities with applications, First edition, Kluwer Academic Publishers, New York, 1996
[19] Open problems in mathematics, Springer, Cham, 2016 | DOI
[20] A Wiener-Hopf dynamical system for variational inequalities, New Zealand J. Math., Volume 31 (2002), pp. 173-182
[21] Resolvent dynamical systems for mixed variational inequalities, Korean J. Comput. Appl. Math., Volume 9 (2002), pp. 15-26
[22] Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput., Volume 134 (2003), pp. 69-81 | DOI
[23] Fundamentals of mixed quasi variational inequalities, Int. J. Pure Appl. Math., Volume 15 (2004), pp. 137-258 | Zbl
[24] Some developments in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277 | DOI
[25] Inertial proximal method for mixed quasi variational inequalities, Nonlinear Funct. Anal. Appl., Volume 8 (2003), pp. 489-496 | Zbl
[26] Some aspects of variational inequalities, J. Comput. Appl. Math., Volume 47 (1993), pp. 285-312 | DOI
[27] Nonlinear programming and variational inequalities: a unified approach, Kluwer Academic Publishers, Dordrecht , Holland, 1998
[28] First-order methods for certain quasi-variational inequalities in a Hilbert space, Comput. Math. Math. Phys., Volume 47 (2007), pp. 183-190 | Zbl | DOI
[29] Second-order methods for some quasi-variational inequalities, (Russian); translated from Differ. Uravn., 44 (2008), 976–987, Differ. Equ., Volume 44 (2008), pp. 1006-1017 | DOI
[30] Formes bilinaires coercitives sur les ensembles convexes, (French) C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416
[31] A recurrent neural network for solving linear projection equations, Neural Netw., Volume 13 (2000), pp. 337-350 | DOI
[32] On the stability of globally projected dynamical systems, J. Optim. Theory Appl., Volume 106 (2000), pp. 129-150 | DOI
[33] On the stability of projected dynamical systems, J. Optim. Theory Appl., Volume 85 (1995), pp. 97-124 | DOI
Cité par Sources :