Extension of the fractional derivative operator of the Riemann-Liouville
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2914-2924.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By using the generalized beta function, we extend the fractional derivative operator of the Riemann-Liouville and discusses its properties. Moreover, we establish some relations to extended special functions of two and three variables via generating functions.
DOI : 10.22436/jnsa.010.06.06
Classification : 33C05, 33C15
Keywords: Hypergeometric function of two and three variables, fractional derivative operator, generating functions, Mellin transform.

Baleanu, Dumitru 1 ; Agarwal, Praveen 2 ; Parmar, Rakesh K. 3 ; Alqurashi, Maysaa M. 4 ; Salahshour, Soheil 5

1 Department of Mathematics, Cankaya University, Ankara, Turkey;Institute of Space Sciences, Magurele-Bucharest, Romania
2 Department of Mathematics, Anand International College of Engineering, Jaipur-303012, Republic of India;Department of Mathematics, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
3 Department of Mathematics, Govt. College of Engineering and Technology, Bikaner-334004, Rajasthan, India
4 Department of Mathematics, King Saud University, P. O. Box 22452, Riyadh 11495, Saudi Arabia
5 Department of Computer Engineering, Mashhad Branch, IAU, Iran
@article{JNSA_2017_10_6_a5,
     author = {Baleanu, Dumitru and Agarwal, Praveen and Parmar, Rakesh K. and Alqurashi, Maysaa M. and Salahshour, Soheil},
     title = {Extension of the fractional derivative operator of the {Riemann-Liouville}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2914-2924},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/}
}
TY  - JOUR
AU  - Baleanu, Dumitru
AU  - Agarwal, Praveen
AU  - Parmar, Rakesh K.
AU  - Alqurashi, Maysaa M.
AU  - Salahshour, Soheil
TI  - Extension of the fractional derivative operator of the Riemann-Liouville
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2914
EP  - 2924
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/
DO  - 10.22436/jnsa.010.06.06
LA  - en
ID  - JNSA_2017_10_6_a5
ER  - 
%0 Journal Article
%A Baleanu, Dumitru
%A Agarwal, Praveen
%A Parmar, Rakesh K.
%A Alqurashi, Maysaa M.
%A Salahshour, Soheil
%T Extension of the fractional derivative operator of the Riemann-Liouville
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2914-2924
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/
%R 10.22436/jnsa.010.06.06
%G en
%F JNSA_2017_10_6_a5
Baleanu, Dumitru; Agarwal, Praveen; Parmar, Rakesh K.; Alqurashi, Maysaa M.; Salahshour, Soheil. Extension of the fractional derivative operator of the Riemann-Liouville. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2914-2924. doi : 10.22436/jnsa.010.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/

[1] Agarwal, R. P.; Agarwal, P. Extended Caputo fractional derivative operator, Adv. Stud. Contemp. Math., Volume 25 (2015), pp. 301-316

[2] Atangana, A.; Koca, I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, Volume 89 (2016), pp. 447-454 | Zbl | DOI

[3] Choi, J.-S.; Rathie, A. K.; Parmar, R. K. Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., Volume 36 (2014), pp. 357-385 | DOI | Zbl

[4] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[5] Koca, I. Mathematical modeling of nuclear family and stability analysis, Appl. Math. Sci., Volume 8 (2014), pp. 3385-3392

[6] Koca, I. A method for solving differential equations of q-fractional order, Appl. Math. Comput., Volume 266 (2015), pp. 1-5 | DOI

[7] Luo, M.-J.; Milovanovic, G. V.; Agarwal, P. Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput., Volume 248 (2014), pp. 631-651 | DOI

[8] Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; (eds.), C. W. Clark NIST handbook of mathematical functions, With 1 CD-ROM (Windows, Macintosh and UNIX), U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010

[9] Ozalp, N.; Koca, I. A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Difference Equ., Volume 2012 (2012), pp. 1-7 | Zbl | DOI

[10] Özarslan, M. A.; Özarslan, E. Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling, Volume 52 (2010), pp. 1825-1833 | Zbl | DOI

[11] Özarslan, M. A.; Yılmaz, B. The extended Mittag-Leffler function and its properties, J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | Zbl | DOI

[12] Paris, R. B.; Kaminski, D. Asymptotics and Mellin-Barnes integrals, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001 | DOI

[13] Parmar, R. K. Some generating relations for generalized extended hypergeometric functions involving generalized fractional derivative operator, J. Concr. Appl. Math., Volume 12 (2014), pp. 217-228 | Zbl

[14] Parmar, R. K.; Pogány, T. K. Extended Srivastava’s triple hypergeometric \(H_{A,p,q}\) function and related bounding inequalities, J. Cont. Math. Anal., Volume 52 (2017), pp. 276-287 | DOI | Zbl

[15] Prabhakar, T. R. A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15 | Zbl

[16] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolʹskiĭ, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993

[17] Sharma, S. C.; Devi, M. Certain properties of extended wright generalized hypergeometric function, Ann. Pure Appl. Math., Volume 9 (2014), pp. 45-51

[18] Srivastava, H. M.; Karlsson, P. W. Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985

[19] Srivastava, H. M.; Manocha, H. L. A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984

[20] Srivastava, H. M.; Parmar, R. K.; Chopra, P. A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms, Volume 1 (2012), pp. 238-258 | Zbl

Cité par Sources :