Voir la notice de l'article provenant de la source International Scientific Research Publications
Baleanu, Dumitru 1 ; Agarwal, Praveen 2 ; Parmar, Rakesh K. 3 ; Alqurashi, Maysaa M. 4 ; Salahshour, Soheil 5
@article{JNSA_2017_10_6_a5, author = {Baleanu, Dumitru and Agarwal, Praveen and Parmar, Rakesh K. and Alqurashi, Maysaa M. and Salahshour, Soheil}, title = {Extension of the fractional derivative operator of the {Riemann-Liouville}}, journal = {Journal of nonlinear sciences and its applications}, pages = {2914-2924}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/} }
TY - JOUR AU - Baleanu, Dumitru AU - Agarwal, Praveen AU - Parmar, Rakesh K. AU - Alqurashi, Maysaa M. AU - Salahshour, Soheil TI - Extension of the fractional derivative operator of the Riemann-Liouville JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2914 EP - 2924 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/ DO - 10.22436/jnsa.010.06.06 LA - en ID - JNSA_2017_10_6_a5 ER -
%0 Journal Article %A Baleanu, Dumitru %A Agarwal, Praveen %A Parmar, Rakesh K. %A Alqurashi, Maysaa M. %A Salahshour, Soheil %T Extension of the fractional derivative operator of the Riemann-Liouville %J Journal of nonlinear sciences and its applications %D 2017 %P 2914-2924 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/ %R 10.22436/jnsa.010.06.06 %G en %F JNSA_2017_10_6_a5
Baleanu, Dumitru; Agarwal, Praveen; Parmar, Rakesh K.; Alqurashi, Maysaa M.; Salahshour, Soheil. Extension of the fractional derivative operator of the Riemann-Liouville. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2914-2924. doi : 10.22436/jnsa.010.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.06/
[1] Extended Caputo fractional derivative operator, Adv. Stud. Contemp. Math., Volume 25 (2015), pp. 301-316
[2] Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, Volume 89 (2016), pp. 447-454 | Zbl | DOI
[3] Extension of extended beta, hypergeometric and confluent hypergeometric functions, Honam Math. J., Volume 36 (2014), pp. 357-385 | DOI | Zbl
[4] Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006
[5] Mathematical modeling of nuclear family and stability analysis, Appl. Math. Sci., Volume 8 (2014), pp. 3385-3392
[6] A method for solving differential equations of q-fractional order, Appl. Math. Comput., Volume 266 (2015), pp. 1-5 | DOI
[7] Some results on the extended beta and extended hypergeometric functions, Appl. Math. Comput., Volume 248 (2014), pp. 631-651 | DOI
[8] NIST handbook of mathematical functions, With 1 CD-ROM (Windows, Macintosh and UNIX), U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010
[9] A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Difference Equ., Volume 2012 (2012), pp. 1-7 | Zbl | DOI
[10] Some generating relations for extended hypergeometric functions via generalized fractional derivative operator, Math. Comput. Modelling, Volume 52 (2010), pp. 1825-1833 | Zbl | DOI
[11] The extended Mittag-Leffler function and its properties, J. Inequal. Appl., Volume 2014 (2014), pp. 1-10 | Zbl | DOI
[12] Asymptotics and Mellin-Barnes integrals, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 2001 | DOI
[13] Some generating relations for generalized extended hypergeometric functions involving generalized fractional derivative operator, J. Concr. Appl. Math., Volume 12 (2014), pp. 217-228 | Zbl
[14] Extended Srivastava’s triple hypergeometric \(H_{A,p,q}\) function and related bounding inequalities, J. Cont. Math. Anal., Volume 52 (2017), pp. 276-287 | DOI | Zbl
[15] A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15 | Zbl
[16] Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolʹskiĭ, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993
[17] Certain properties of extended wright generalized hypergeometric function, Ann. Pure Appl. Math., Volume 9 (2014), pp. 45-51
[18] Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985
[19] A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984
[20] A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms, Volume 1 (2012), pp. 238-258 | Zbl
Cité par Sources :