Voir la notice de l'article provenant de la source International Scientific Research Publications
Chuensupantharat, Nantaporn 1 ; Kumam, Poom 2 ; Ansari, Arslan Hojat 3 ; Ali, Muhammad Usman 4
@article{JNSA_2017_10_6_a1, author = {Chuensupantharat, Nantaporn and Kumam, Poom and Ansari, Arslan Hojat and Ali, Muhammad Usman}, title = {Pair {\((F,h)\)} upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions}, journal = {Journal of nonlinear sciences and its applications}, pages = {2868-2878}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/} }
TY - JOUR AU - Chuensupantharat, Nantaporn AU - Kumam, Poom AU - Ansari, Arslan Hojat AU - Ali, Muhammad Usman TI - Pair \((F,h)\) upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2868 EP - 2878 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/ DO - 10.22436/jnsa.010.06.02 LA - en ID - JNSA_2017_10_6_a1 ER -
%0 Journal Article %A Chuensupantharat, Nantaporn %A Kumam, Poom %A Ansari, Arslan Hojat %A Ali, Muhammad Usman %T Pair \((F,h)\) upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions %J Journal of nonlinear sciences and its applications %D 2017 %P 2868-2878 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/ %R 10.22436/jnsa.010.06.02 %G en %F JNSA_2017_10_6_a1
Chuensupantharat, Nantaporn; Kumam, Poom; Ansari, Arslan Hojat; Ali, Muhammad Usman. Pair \((F,h)\) upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2868-2878. doi : 10.22436/jnsa.010.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/
[1] On (\(\alpha^*,\psi\) )-contractive multi-valued mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-7
[2] A new approach to (\(\alpha,\psi\) )-contractive nonself multivalued mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-9 | DOI | Zbl
[3] (\(\alpha,\psi,\xi\))-contractive multivalued mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI
[4] Mizoguchi-Takahashi’s fixed point theorem with \(\alpha,\eta\) functions, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-4 | Zbl | DOI
[5] Fixed points of generalized \(\alpha-\psi\)-contractions, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 108 (2014), pp. 519-526 | DOI
[6] Note on ”\(\alpha\)-admissible mappings and related fixed point theorems”, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, September (2014), pp. 373-376
[7] Some fixed point theorems for ordered F-(F, h)-contraction and subcontraction in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud., Volume 9 (2016), pp. 37-53 | Zbl
[8] On fixed points of \(\alpha-\psi\)-contractive multifunctions, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | DOI
[9] Fixed point results for single and set-valued \(\alpha-\eta-\psi\)-contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23 | DOI | Zbl
[10] Mizoguchi-Takahashi’s type fixed point theorem, Comput. Math. Appl., Volume 57 (2009), pp. 507-511 | DOI
[11] Generalized multivalued rational type contractions, , Volume 9 (2016), pp. 26-36 | Zbl
[12] Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-17 | Zbl
[13] Generalization of Mizoguchi-Takahashi type contraction and related fixed point theorems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-9 | Zbl | DOI
[14] Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Inequal. Appl., Volume 2013 (2013), pp. 1-10 | DOI | Zbl
[15] On modified \(\alpha-\phi\)-contractions, J. Adv. Math. Stud., Volume 6 (2013), pp. 162-166 | Zbl
[16] Some results on fixed points of \(\alpha-\psi\)-Ciric generalized multifunctions, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI
[17] Some fixed point results for \(\alpha-\psi\)-contractive type mappings on intuitionistic fuzzy metric spaces, J. Adv. Math. Stud., Volume 7 (2014), pp. 176-181 | Zbl
[18] Modified \(\alpha-\psi\)-contractive mappings with applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-19 | Zbl | DOI
[19] Fixed point theorems for \(\alpha\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI
Cité par Sources :