Pair $(F,h)$ upper class and $(\alpha ,\mu)$-generalized multivalued rational type contractions
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2868-2878.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce notions of $(\alpha ,\mu)$-generalized rational contraction conditions and investigate the existence of the fixed point of such mappings on complete metric spaces. To illustrate our result we also construct an example.
DOI : 10.22436/jnsa.010.06.02
Classification : 47H10, 54H25
Keywords: \(\alpha\)-admissible, \(\mu\)-subadmissible, fixed point, \((\alpha ،\mu)\)-generalized multivalued rational contraction, pair \((F، h)\) upper class condition.

Chuensupantharat, Nantaporn 1 ; Kumam, Poom 2 ; Ansari, Arslan Hojat 3 ; Ali, Muhammad Usman 4

1 KMUTT-Fixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
2 KMUTT-Fixed Point Research Laboratory, Department of Mathematics, Room SCL 802 Fixed Point Laboratory, Science Laboratory Building, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;KMUTT-Fixed Point Theory and Applications Research Group, Theoretical and Computational Science (TaCS) Center, Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand;Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
3 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran
4 School of Natural Sciences, Department of Mathematics, National University of Sciences and Technology, H-12, Islamabad, Pakistan
@article{JNSA_2017_10_6_a1,
     author = {Chuensupantharat, Nantaporn and Kumam, Poom and Ansari, Arslan Hojat and Ali, Muhammad Usman},
     title = {Pair {\((F,h)\)} upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2868-2878},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/}
}
TY  - JOUR
AU  - Chuensupantharat, Nantaporn
AU  - Kumam, Poom
AU  - Ansari, Arslan Hojat
AU  - Ali, Muhammad Usman
TI  - Pair \((F,h)\) upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2868
EP  - 2878
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/
DO  - 10.22436/jnsa.010.06.02
LA  - en
ID  - JNSA_2017_10_6_a1
ER  - 
%0 Journal Article
%A Chuensupantharat, Nantaporn
%A Kumam, Poom
%A Ansari, Arslan Hojat
%A Ali, Muhammad Usman
%T Pair \((F,h)\) upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2868-2878
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/
%R 10.22436/jnsa.010.06.02
%G en
%F JNSA_2017_10_6_a1
Chuensupantharat, Nantaporn; Kumam, Poom; Ansari, Arslan Hojat; Ali, Muhammad Usman. Pair \((F,h)\) upper class and \((\alpha ,\mu)\)-generalized multivalued rational type contractions. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2868-2878. doi : 10.22436/jnsa.010.06.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.02/

[1] Ali, M. U.; Kamran, T. On (\(\alpha^*,\psi\) )-contractive multi-valued mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-7

[2] Ali, M. U.; Kamran, T.; Karapınar, E. A new approach to (\(\alpha,\psi\) )-contractive nonself multivalued mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-9 | DOI | Zbl

[3] Ali, M. U.; Kamran, T.; Karapınar, E. (\(\alpha,\psi,\xi\))-contractive multivalued mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI

[4] Ali, M. U.; Kamran, T.; Sintunavarat, W.; Katchang, P. Mizoguchi-Takahashi’s fixed point theorem with \(\alpha,\eta\) functions, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-4 | Zbl | DOI

[5] Amiri, P.; Rezapour, S.; Shahzad, N. Fixed points of generalized \(\alpha-\psi\)-contractions, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM, Volume 108 (2014), pp. 519-526 | DOI

[6] Ansari, A. H. Note on ”\(\alpha\)-admissible mappings and related fixed point theorems”, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, September (2014), pp. 373-376

[7] Ansari, A. H.; Shukla, S. Some fixed point theorems for ordered F-(F, h)-contraction and subcontraction in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud., Volume 9 (2016), pp. 37-53 | Zbl

[8] Asl, J. H.; Rezapour, S.; Shahzad, N. On fixed points of \(\alpha-\psi\)-contractive multifunctions, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | DOI

[9] Hussain, N.; Salimi, P.; Latif, A. Fixed point results for single and set-valued \(\alpha-\eta-\psi\)-contractive mappings, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-23 | DOI | Zbl

[10] Kamran, T. Mizoguchi-Takahashi’s type fixed point theorem, Comput. Math. Appl., Volume 57 (2009), pp. 507-511 | DOI

[11] Karapınar, E.; Ali, R.; Kamran, T.; Ali, M. U. Generalized multivalued rational type contractions, , Volume 9 (2016), pp. 26-36 | Zbl

[12] Karapınar, E.; Samet, B. Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-17 | Zbl

[13] Kiran, Q.; Ali, M. U.; Kamran, T. Generalization of Mizoguchi-Takahashi type contraction and related fixed point theorems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-9 | Zbl | DOI

[14] Mınak, G.; Altun, I. Some new generalizations of Mizoguchi-Takahashi type fixed point theorem, J. Inequal. Appl., Volume 2013 (2013), pp. 1-10 | DOI | Zbl

[15] Mohammadi, B.; Rezapour, S. On modified \(\alpha-\phi\)-contractions, J. Adv. Math. Stud., Volume 6 (2013), pp. 162-166 | Zbl

[16] Mohammadi, B.; Rezapour, S.; Shahzad, N. Some results on fixed points of \(\alpha-\psi\)-Ciric generalized multifunctions, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[17] Rezapour, S.; Samei, M. E. Some fixed point results for \(\alpha-\psi\)-contractive type mappings on intuitionistic fuzzy metric spaces, J. Adv. Math. Stud., Volume 7 (2014), pp. 176-181 | Zbl

[18] Salimi, P.; Latif, A.; Hussain, N. Modified \(\alpha-\psi\)-contractive mappings with applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-19 | Zbl | DOI

[19] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI

Cité par Sources :