Asymptotically $\jmath$-Lacunary statistical equivalent of order $\alpha$ for sequences of sets
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2860-2867.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper presents the following definition which is a natural combination of the definition for asymptotically equivalent of order $\alpha$, where $0 \alpha \leq 1$, $\jmath$-statistically limit, and $\jmath$-lacunary statistical convergence for sequences of sets. Let $(X, \rho)$ be a metric space and $\theta$ be a lacunary sequence. For any non-empty closed subsets $A_k, B_k \subseteq X$ such that $d(x,A_k) > 0$ and $d(x, B _k) > 0$ for each $x \in X$, we say that the sequences $\{A_k\}$ and $\{B_k\}$are Wijsman asymptotically $\jmath$-lacunary statistical equivalent of order $\alpha$ to multiple L, where $0 \alpha \leq 1$, provided that for each $\varepsilon > 0$ and each $x \in X$,
$\{r\in \mathbb{N}: \frac{1}{h^\alpha_r}|\{k\in I_r: |d(x;A_k,B_k)-L|\geq\varepsilon\}|\geq\delta\}\in \jmath,$
(denoted by $\{A_k\}^{s\frac{1}{\theta}(\jmath_W)^\alpha}\{B_k\}$ ) and simply asymptotically $\jmath$-lacunary statistical equivalent of order $\alpha$ if $L = 1$. In addition, we shall also present some inclusion theorems. The study leaves some interesting open problems.
DOI : 10.22436/jnsa.010.06.01
Classification : 40A35, 46A45
Keywords: Asymptotical equivalent, sequences of sets, ideal convergence, Wijsman convergence, \(\jmath\)-statistical convergence, \(\jmath\)-lacunary statistical convergence, statistical convergence of order \(\alpha\).

Savaş, Ekrem 1

1 Istanbul Commerce University, Department of Mathematics, Sutluce-Istanbul, Turkey
@article{JNSA_2017_10_6_a0,
     author = {Sava\c{s}, Ekrem},
     title = {Asymptotically {\(\jmath\)-Lacunary} statistical equivalent of order $\alpha$ for sequences of sets},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2860-2867},
     publisher = {mathdoc},
     volume = {10},
     number = {6},
     year = {2017},
     doi = {10.22436/jnsa.010.06.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/}
}
TY  - JOUR
AU  - Savaş, Ekrem
TI  - Asymptotically \(\jmath\)-Lacunary statistical equivalent of order $\alpha$ for sequences of sets
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2860
EP  - 2867
VL  - 10
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/
DO  - 10.22436/jnsa.010.06.01
LA  - en
ID  - JNSA_2017_10_6_a0
ER  - 
%0 Journal Article
%A Savaş, Ekrem
%T Asymptotically \(\jmath\)-Lacunary statistical equivalent of order $\alpha$ for sequences of sets
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2860-2867
%V 10
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/
%R 10.22436/jnsa.010.06.01
%G en
%F JNSA_2017_10_6_a0
Savaş, Ekrem. Asymptotically \(\jmath\)-Lacunary statistical equivalent of order $\alpha$ for sequences of sets. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2860-2867. doi : 10.22436/jnsa.010.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/

[1] Baronti, M.; P. L. Papini Convergence of sequences of sets, Methods of functional analysis in approximation theory, Bombay, (1985), Internat. Schriftenreihe Numer. Math., Birkhäuser , Basel, Volume 76 (1986), pp. 133-155

[2] Çolak, R. Statistical convergence of order \(\alpha\), Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India (2010), pp. 121-129

[3] Çolak, R.; Bektaş, C. A. \(\lambda\)-statistical convergence of order \(\alpha\), Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 953-959 | DOI

[4] Das, P.; Savaş, E. On I-statistical and I-lacunary statistical convergence of order \(\alpha\), Bull. Iranian Math. Soc., Volume 40 (2014), pp. 459-472 | Zbl

[5] Das, P.; Savaş, E.; Ghosal, S. K. On generalizations of certain summability methods using ideals, Appl. Math. Lett., Volume 24 (2011), pp. 1509-1514 | DOI | Zbl

[6] Fast, H. Sur la convergence statistique, (French) Colloquium Math., Volume 2 (1951), pp. 241-244 | EuDML

[7] Fridy, J. A. On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI

[8] Fridy, J. A.; Orhan, C. Lacunary statistical convergence, Pacific J. Math., Volume 160 (1993), pp. 43-51

[9] Kişi, Ö.; Savaş, E.; Nuray, F. On I-asymptotically lacunary statistical equivalence of sequences of sets (preprint)

[10] Kostyrko, P.; Šalát, T.; Wilczyński, W. I-convergence, Real Anal. Exchange, Volume 26 (2000/01), pp. 669-685

[11] Li, J.-L. Asymptotic equivalence of sequences and summability, Internat. J. Math. Math. Sci., Volume 20 (1997), pp. 749-757

[12] Marouf, M. S. Asymptotic equivalence and summability, Internat. J. Math. Math. Sci., Volume 16 (1993), pp. 755-762

[13] Nuray, F.; Rhoades, B. E. Statistical convergence of sequences of sets, Fasc. Math., Volume 49 (2012), pp. 87-99

[14] Patterson, R. F. On asymptotically statistical equivalent sequences, Demonstratio Math., Volume 36 (2003), pp. 149-153

[15] Savaş, E. Double almost lacunary statistical convergence of order \(\alpha\), Adv. Difference Equ., Volume 2013 (2013), pp. 1-10 | Zbl | DOI

[16] Savaş, E. On I-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., Volume 2013 (2013), pp. 1-7 | Zbl | DOI

[17] Savaş, E. On asymptotically I-lacunary statistical equivalent sequences of order \(\alpha\), International Conference on Pure Mathematics-Applied Mathematics, Venice, Italy (2014), pp. 15-17

[18] Savaş, E. On I-lacunary statistical convergence of order \(\alpha\) for sequences of sets, Filomat, Volume 29 (2015), pp. 1223-1229 | Zbl | DOI

[19] Savaş, E.; Das, P. A generalized statistical convergence via ideals, Appl. Math. Lett., Volume 24 (2011), pp. 826-830 | DOI

[20] Savaş, E.; Gumuş, H. A generalization on I-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI | Zbl

[21] Ulusu, U.; Nuray, F. Lacunary statistical convergence of sequences of sets, Prog. Appl. Math., Volume 4 (2012), pp. 99-109

[22] Ulusu, U.; Nuray, F. On asymptotically lacunary statistical equivalent set sequences, J. Math., Volume 2013 (2013), pp. 1-5 | Zbl

[23] Ulusu, U.; Savaş, E. An extension of asymptotically lacunary statistical equivalence set sequences, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI

Cité par Sources :