Voir la notice de l'article provenant de la source International Scientific Research Publications
$\{r\in \mathbb{N}: \frac{1}{h^\alpha_r}|\{k\in I_r: |d(x;A_k,B_k)-L|\geq\varepsilon\}|\geq\delta\}\in \jmath,$ |
Savaş, Ekrem 1
@article{JNSA_2017_10_6_a0, author = {Sava\c{s}, Ekrem}, title = {Asymptotically {\(\jmath\)-Lacunary} statistical equivalent of order $\alpha$ for sequences of sets}, journal = {Journal of nonlinear sciences and its applications}, pages = {2860-2867}, publisher = {mathdoc}, volume = {10}, number = {6}, year = {2017}, doi = {10.22436/jnsa.010.06.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/} }
TY - JOUR AU - Savaş, Ekrem TI - Asymptotically \(\jmath\)-Lacunary statistical equivalent of order $\alpha$ for sequences of sets JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2860 EP - 2867 VL - 10 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/ DO - 10.22436/jnsa.010.06.01 LA - en ID - JNSA_2017_10_6_a0 ER -
%0 Journal Article %A Savaş, Ekrem %T Asymptotically \(\jmath\)-Lacunary statistical equivalent of order $\alpha$ for sequences of sets %J Journal of nonlinear sciences and its applications %D 2017 %P 2860-2867 %V 10 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/ %R 10.22436/jnsa.010.06.01 %G en %F JNSA_2017_10_6_a0
Savaş, Ekrem. Asymptotically \(\jmath\)-Lacunary statistical equivalent of order $\alpha$ for sequences of sets. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 6, p. 2860-2867. doi : 10.22436/jnsa.010.06.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.06.01/
[1] Convergence of sequences of sets, Methods of functional analysis in approximation theory, Bombay, (1985), Internat. Schriftenreihe Numer. Math., Birkhäuser , Basel, Volume 76 (1986), pp. 133-155
[2] Statistical convergence of order \(\alpha\), Modern Methods in Analysis and Its Applications, Anamaya Pub., New Delhi, India (2010), pp. 121-129
[3] \(\lambda\)-statistical convergence of order \(\alpha\), Acta Math. Sci. Ser. B Engl. Ed., Volume 31 (2011), pp. 953-959 | DOI
[4] On I-statistical and I-lacunary statistical convergence of order \(\alpha\), Bull. Iranian Math. Soc., Volume 40 (2014), pp. 459-472 | Zbl
[5] On generalizations of certain summability methods using ideals, Appl. Math. Lett., Volume 24 (2011), pp. 1509-1514 | DOI | Zbl
[6] Sur la convergence statistique, (French) Colloquium Math., Volume 2 (1951), pp. 241-244 | EuDML
[7] On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI
[8] Lacunary statistical convergence, Pacific J. Math., Volume 160 (1993), pp. 43-51
[9] On I-asymptotically lacunary statistical equivalence of sequences of sets (preprint)
[10] I-convergence, Real Anal. Exchange, Volume 26 (2000/01), pp. 669-685
[11] Asymptotic equivalence of sequences and summability, Internat. J. Math. Math. Sci., Volume 20 (1997), pp. 749-757
[12] Asymptotic equivalence and summability, Internat. J. Math. Math. Sci., Volume 16 (1993), pp. 755-762
[13] Statistical convergence of sequences of sets, Fasc. Math., Volume 49 (2012), pp. 87-99
[14] On asymptotically statistical equivalent sequences, Demonstratio Math., Volume 36 (2003), pp. 149-153
[15] Double almost lacunary statistical convergence of order \(\alpha\), Adv. Difference Equ., Volume 2013 (2013), pp. 1-10 | Zbl | DOI
[16] On I-asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., Volume 2013 (2013), pp. 1-7 | Zbl | DOI
[17] On asymptotically I-lacunary statistical equivalent sequences of order \(\alpha\), International Conference on Pure Mathematics-Applied Mathematics, Venice, Italy (2014), pp. 15-17
[18] On I-lacunary statistical convergence of order \(\alpha\) for sequences of sets, Filomat, Volume 29 (2015), pp. 1223-1229 | Zbl | DOI
[19] A generalized statistical convergence via ideals, Appl. Math. Lett., Volume 24 (2011), pp. 826-830 | DOI
[20] A generalization on I-asymptotically lacunary statistical equivalent sequences, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9 | DOI | Zbl
[21] Lacunary statistical convergence of sequences of sets, Prog. Appl. Math., Volume 4 (2012), pp. 99-109
[22] On asymptotically lacunary statistical equivalent set sequences, J. Math., Volume 2013 (2013), pp. 1-5 | Zbl
[23] An extension of asymptotically lacunary statistical equivalence set sequences, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | Zbl | DOI
Cité par Sources :