A linear multisensor PHD filters via the measurement product space
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2408-2422.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The probability hypothesis density (PHD) is the first moment of RFS. Its integral over any region gives the expectation number of targets in that region. In the finite set statistics (FISST) framework, the PHD recursion, or PHD filter, approximate the multi-target Bayes recursion. This paper deals with the multisensor PHD filter under a linear correlation condition through multisensor product space and the measurement dimension extension (MDE) approach, which remains the similar appearance like the conventional PHD filters except the product space and some parameters in the filters. However, in the product space the dimension extended measurements may greatly increase the computational load. Therefore, we propose a fast algorithm for the linear multisensor PHD (LM-PHD) filters to increase the running speed and with cost of slightly sacrificing the tracking performance.
DOI : 10.22436/jnsa.010.05.12
Classification : 93E10
Keywords: Linear correlation, random finite set, PHD filter, dimension extension of measurements, product space.

Liu, Weifeng 1 ; Chen, Yimei 2 ; Wen, Chenglin 2 ; Cui, Hailong 2

1 School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, 310018 Hangzhou, P. R. China;Science and Technology on Electro-optic Control Laboratory, Luoyang 471000, P. R. China
2 School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, 310018 Hangzhou, P. R. China
@article{JNSA_2017_10_5_a11,
     author = {Liu, Weifeng and Chen, Yimei and Wen, Chenglin and Cui, Hailong},
     title = {A linear multisensor {PHD} filters via the measurement product space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2408-2422},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.12/}
}
TY  - JOUR
AU  - Liu, Weifeng
AU  - Chen, Yimei
AU  - Wen, Chenglin
AU  - Cui, Hailong
TI  - A linear multisensor PHD filters via the measurement product space
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2408
EP  - 2422
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.12/
DO  - 10.22436/jnsa.010.05.12
LA  - en
ID  - JNSA_2017_10_5_a11
ER  - 
%0 Journal Article
%A Liu, Weifeng
%A Chen, Yimei
%A Wen, Chenglin
%A Cui, Hailong
%T A linear multisensor PHD filters via the measurement product space
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2408-2422
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.12/
%R 10.22436/jnsa.010.05.12
%G en
%F JNSA_2017_10_5_a11
Liu, Weifeng; Chen, Yimei; Wen, Chenglin; Cui, Hailong. A linear multisensor PHD filters via the measurement product space. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2408-2422. doi : 10.22436/jnsa.010.05.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.12/

[1] Bar-Shalom, Y. Tracking methods in a multitarget environment, IEEE Trans. Autom. Control, Volume 23 (1978), pp. 618-626 | DOI | Zbl

[2] Chang, K.; Pollock, M. E.; Skrehot, M. K. Space-based millimeter wave debris tracking radar, Proc. SPIE, Monolithic Microwave Integrated Circuits for Sensors, Radar, and Communications Systems, Orlando, FL, Volume 1475 (1991), pp. 257-266

[3] Chen, L.; Zhao, Z.-Y.; Yan, H. A Probabilistic Relaxation Labeling (PRL) based method for C. elegans cell tracking in microscopic image sequences, IEEE J. Sel. Topics Signal Process, Volume 10 (2016), pp. 185-192 | DOI

[4] Deusch, H.; Reuter, S.; Dietmayer, K. The labeled multi-Bernoulli SLAM filter, IEEE Trans. Signal Process., Volume 22 (2015), pp. 1561-1565 | DOI

[5] Farrell, W. J. Interacting multiple model filter for tactical ballistic missile tracking, IEEE Trans. Aerosp. Electron. Syst., Volume 44 (2008), pp. 418-426 | DOI

[6] Huang, C.; Li, Y.; Nevatia, R. Multiple target tracking by learning-based hierarchical association of detection responses, IEEE Trans. Pattern Anal. Mach. Intell., Volume 35 (2013), pp. 898-910 | DOI

[7] Kim, J.-W.; Menon, P.; Ohlmeyer, E. Motion models for use with the Maneuvering Ballistic Missile tracking estimators, Proceedings of the AIAA guidance, navigation, and control conference, Toronto, Ontario, Canada (2010), pp. 1-13 | DOI

[8] Kircher, M. F.; Gambhir, S. S.; Grimm, J. Noninvasive cell-tracking methods, Nat. Rev. Clin. Oncol., Volume 8 (2011), pp. 677-688 | DOI

[9] Lian, F.; Han, C.-Z.; Liu, W.-F.; Chen, H. Joint spatial registration and multi-target tracking using an extended probability hypothesis density filter, IET radar, sonar & navigation, Volume 5 (2011), pp. 441-448

[10] Lin, L.; Bar-Shalom, Y.; Kirubarajan, T. Track labeling and PHD filter for multitarget tracking, IEEE Trans. Aerosp. Electron. Syst., Volume 42 (2006), pp. 778-795 | DOI

[11] Liu, W.-F.; Wen, C.-L. A linear multisensor PHD filter using the measurement dimension extension approach, Advances in Swarm Intelligence: the 2th International Conference on Swarm Intelligence, Chongqing, China (2011), pp. 486-493 | DOI

[12] W.-F. Liu; C.-L.Wen The fast linear multisensor RFS-multitarget tracking filters, Proceedings of the 17th International Conference on Information Fusion, Slamanca, Spanish (2014), pp. 1-8

[13] Mahler, R. P. S. Multitarget Bayes filtering via first-order multitarget moments, IEEE Trans. Aerosp. Electron. Syst, Volume 39 (2003), pp. 1152-1178 | DOI

[14] Mahler, R. P. S. PHD filters of higher order in target number, IEEE Trans. Aerosp. Electron. Syst., Volume 43 (2007), pp. 1523-1543 | DOI

[15] Mahler, R. P. S. Statistical multisource-multitarget information fusion, Artech House, Inc., Norwood, MA, USA, 2007 | Zbl

[16] Mahler, R. P. S. Approximate multisensor CPHD and PHD filters, Proceedings of the 13th International Conference on Information Fusion (2010), pp. 1152-1178 | DOI

[17] Mahler, R. P. S. Advances in statistical multisource-multitarget information fusion, Artech House, Inc., Norwood, MA, USA, 2014 | Zbl

[18] Mahler, R. P. S.; Vo, B.-T.; Vo, B.-N. Forward-backward probability hypothesis density smoothing, IEEE Trans. Aerosp. Electron. Syst., Volume 48 (2012), pp. 707-728 | DOI

[19] Nandakumaran, N.; Punithakumar, K.; Kirubarajan, T. Improved multi-target tracking using probability hypothesis density smoothing, Proceedings of the SPIE Conference on Signal and Processing of Small Targets, Volume 6699 (2007), pp. 1-6 | DOI

[20] Panta, K.; Vo, B.-N.; Singh, S. Novel data association schemes for the probability hypothesis density filter, IEEE Trans. Aerosp. Electron. Syst., Volume 43 (2007), pp. 556-570 | DOI

[21] Pelton, J. N. Tracking of orbital debris and avoidance of satellite collisions, Handbook of Satellite Applications, Springer, New York (2016), pp. 1-13

[22] Reid, D. B. An algorithm for tracking multiple targets, IEEE Trans. Autom. Control, Volume 24 (1979), pp. 843-854 | DOI

[23] Reuter, S.; Vo, B.-T.; Vo, B.-N.; Dietmayer, K. The labeled multi-Bernoulli filter, IEEE Trans. Signal Process., Volume 62 (2014), pp. 3246-3260 | DOI

[24] Saulson, B. G.; Chang, K.-C. Nonlinear estimation comparison for ballistic missile tracking, Opt. Eng., Volume 43 (2004), pp. 1424-1438 | DOI

[25] Schuhmacher, D.; Vo, B.-T.; Vo, B.-N. A consistent metric for performance evaluation of multi-object filters, IEEE Trans. Signal Process., Volume 56 (2008), pp. 3447-3457 | DOI

[26] Sidenbladh, H. Multi-target particle filtering for the probability hypothesis density, ArXiv, Volume 2003 (2003), pp. 1-7

[27] Suwantong, R. Development of the Moving HorizonEstimator with Pre-Estimation (MHE-PE), Application to Space Debris Tracking during the Re-Entries, Automatic, Supélec, 2014

[28] Vo, B.-N.; Ma, W.-K. The Gaussian mixture probability hypothesis density filter, IEEE Trans. Signal Process., Volume 54 (2006), pp. 4091-4104 | DOI

[29] Vo, B.-N.; Singh, S.; Doucet, A. Sequential Monte Carlo implementation of the PHD filter for multi-target tracking, PProceedings of the International Conference on Information Fusion, Cairns, Australia (2003), pp. 792-799

[30] Vo, B.-T.; Vo, B.-N. Labeled random finite sets and multi-object conjugate priors, IEEE Trans. Signal Process., Volume 13 (2013), pp. 3460-3475 | DOI

[31] Vo, B.-T.; Vo, B.-N.; Cantoni, A. Analytic implementations of the cardinalized probability hypothesis density filter, IEEE Trans. Signal Process., Volume 55 (2007), pp. 3553-3567 | DOI

[32] Vo, B.-T.; Vo, B.-N.; Cantoni, A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations, IEEE Trans. Signal Process., Volume 57 (2009), pp. 409-423 | DOI

[33] Vo, B.-N.; Vo, B.-T.; Mahler, R. P. S. Closed-form solutions to forwardbackward smoothing, IEEE Trans. Signal Process., Volume 60 (2012), pp. 2-17 | DOI

[34] Vo, B.-N.; Vo, B.-T.; Phung, D. Labeled random finite sets and the Bayes multi-target tracking filter, IEEE Trans. Signal Process., Volume 62 (2014), pp. 6554-6567 | DOI

[35] Yu, Q.; Medioni, G. Multiple-target tracking by spatiotemporal monte carlo markov chain data association, IEEE Trans. Pattern Anal. Mach. Intell., Volume 31 (2009), pp. 2196-2210 | DOI

[36] Zajic, T.; Mahler, R. Particle-systems implementation of the PHD multitarget-tracking filter, Proc. SPIE, Signal Processing, Sensor Fusion, and Target Recognition XII, Volume 5096 (2003), pp. 291-299 | DOI

Cité par Sources :