Voir la notice de l'article provenant de la source International Scientific Research Publications
Vahidi, Javad 1
@article{JNSA_2017_10_5_a10, author = {Vahidi, Javad}, title = {Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random {C*-algebras}}, journal = {Journal of nonlinear sciences and its applications}, pages = {2402-2407}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2017}, doi = {10.22436/jnsa.010.05.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/} }
TY - JOUR AU - Vahidi, Javad TI - Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2402 EP - 2407 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/ DO - 10.22436/jnsa.010.05.11 LA - en ID - JNSA_2017_10_5_a10 ER -
%0 Journal Article %A Vahidi, Javad %T Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras %J Journal of nonlinear sciences and its applications %D 2017 %P 2402-2407 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/ %R 10.22436/jnsa.010.05.11 %G en %F JNSA_2017_10_5_a10
Vahidi, Javad. Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2402-2407. doi : 10.22436/jnsa.010.05.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/
[1] Distribution and survival functions with applications in intuitionistic random Lie \(C^*\)-algebras, J. Comput. Anal. Appl., Volume 21 (2016), pp. 345-354
[2] On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., Volume 346 (2004), pp. 43-52
[3] Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Appl., Volume 2008 (2008), pp. 1-15 | DOI
[4] Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, Springer, New York, 2013
[5] Lattictic non-Archimedean random stability of ACQ functional equation, Adv. Difference Equ., Volume 2011 (2011), pp. 1-12 | DOI | Zbl
[6] A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309 | Zbl | DOI
[7] \(C^*\)-Algebras, North-Holland Publ. Com., Amsterdam, New York and Oxford, 1977
[8] Notes on Real and Complex \(C^*\)-Algebras, Shiva Math. Series IV, Shiva Publ. Limited, England, 1982
[9] Approximation of homomorphisms and derivations on non-Archimedean random Lie \(C^*\)-algebras via fixed point method, J. Inequal. Appl., Volume 2012 (2012), pp. 1-10 | Zbl | DOI
[10] On stability of functional inequalities at random lattice \(\phi\)-normed spaces, J. Comput. Anal. Appl., Volume 15 (2013), pp. 1403-1412 | Zbl
[11] On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572 | DOI
[12] On the stability of the additive Cauchy functional equation in random normed spaces, Appl. Math. Lett., Volume 24 (2011), pp. 2005-2009 | DOI
[13] The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., Volume 110 (2010), pp. 797-803 | DOI
[14] Random stability on an additive-quadratic-quartic functional equation, J. Inequal. Appl., Volume 2010 (2010), pp. 1-18 | DOI
[15] Random homomorphisms and random derivations in random normed algebras via fixed point method, J. Inequal. Appl., Volume 2012 (2012), pp. 1-13 | Zbl | DOI
[16] Positive-additive functional equations in \(C^*\)-algebras, Fixed Point Theory, Volume 13 (2012), pp. 613-622 | Zbl
[17] On nonlinear stability in various random normed spaces, J. Inequal. Appl., Volume 2011 (2011), pp. 1-17 | DOI | Zbl
[18] Distribution and survival functions and application in intuitionistic random approximation, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2535-2540
[19] A note to paper ”On the stability of cubic mappings and quartic mappings in random normed spaces” , J. Inequal. Appl., Volume 2009 (2009), pp. 1-6 | Zbl | DOI
[20] A functional equation related to inner product spaces in non-Archimedean L-random normed spaces, J. Inequal. Appl., Volume 2012 (2012), pp. 1-16 | Zbl | DOI
Cité par Sources :