Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2402-2407.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We apply a fixed point theorem for approximating of a positive-additive functional equation in intuitionistic random $C^*$- algebras.
DOI : 10.22436/jnsa.010.05.11
Classification : 47H10
Keywords: Approximation, fixed point theory, intuitionistic, random normed spaces, \(C^*\)- algebra.

Vahidi, Javad 1

1 Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
@article{JNSA_2017_10_5_a10,
     author = {Vahidi, Javad},
     title = {Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random {C*-algebras}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2402-2407},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/}
}
TY  - JOUR
AU  - Vahidi, Javad
TI  - Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2402
EP  - 2407
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/
DO  - 10.22436/jnsa.010.05.11
LA  - en
ID  - JNSA_2017_10_5_a10
ER  - 
%0 Journal Article
%A Vahidi, Javad
%T Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2402-2407
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/
%R 10.22436/jnsa.010.05.11
%G en
%F JNSA_2017_10_5_a10
Vahidi, Javad. Application of fixed point theory for approximating of a positive-additive functional equation in intuitionistic random C*-algebras. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2402-2407. doi : 10.22436/jnsa.010.05.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.11/

[1] Abdou, A. A. N.; Cho, Y. J.; Saadati, R. Distribution and survival functions with applications in intuitionistic random Lie \(C^*\)-algebras, J. Comput. Anal. Appl., Volume 21 (2016), pp. 345-354

[2] Cădariu, L.; Radu, V. On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., Volume 346 (2004), pp. 43-52

[3] Cădariu, L.; Radu, V. Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Appl., Volume 2008 (2008), pp. 1-15 | DOI

[4] Cho, Y. J.; Rassias, Th. M.; Saadati, R. Stability of functional equations in random normed spaces, Springer Optimization and Its Applications, Springer, New York, 2013

[5] Cho, Y. J.; Saadati, R. Lattictic non-Archimedean random stability of ACQ functional equation, Adv. Difference Equ., Volume 2011 (2011), pp. 1-12 | DOI | Zbl

[6] Diaz, J.; Margolis, B. A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Volume 74 (1968), pp. 305-309 | Zbl | DOI

[7] Dixmier, J. \(C^*\)-Algebras, North-Holland Publ. Com., Amsterdam, New York and Oxford, 1977

[8] Goodearl, K. R. Notes on Real and Complex \(C^*\)-Algebras, Shiva Math. Series IV, Shiva Publ. Limited, England, 1982

[9] Kang, J. I.; Saadati, R. Approximation of homomorphisms and derivations on non-Archimedean random Lie \(C^*\)-algebras via fixed point method, J. Inequal. Appl., Volume 2012 (2012), pp. 1-10 | Zbl | DOI

[10] Lee, S. J.; Saadati, R. On stability of functional inequalities at random lattice \(\phi\)-normed spaces, J. Comput. Anal. Appl., Volume 15 (2013), pp. 1403-1412 | Zbl

[11] Miheţ, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., Volume 343 (2008), pp. 567-572 | DOI

[12] Miheţ, D.; Saadati, R. On the stability of the additive Cauchy functional equation in random normed spaces, Appl. Math. Lett., Volume 24 (2011), pp. 2005-2009 | DOI

[13] Miheţ, D.; Saadati, R.; Vaezpour, S. M. The stability of the quartic functional equation in random normed spaces, Acta Appl. Math., Volume 110 (2010), pp. 797-803 | DOI

[14] Mohamadi, M.; Cho, Y. J.; Park, C.; Vetro, P.; Saadati, R. Random stability on an additive-quadratic-quartic functional equation, J. Inequal. Appl., Volume 2010 (2010), pp. 1-18 | DOI

[15] Park, C.; Gordji, M. Eshaghi; Saadati, R. Random homomorphisms and random derivations in random normed algebras via fixed point method, J. Inequal. Appl., Volume 2012 (2012), pp. 1-13 | Zbl | DOI

[16] Park, C.; Kenary, H. A.; Kim, S. Og Positive-additive functional equations in \(C^*\)-algebras, Fixed Point Theory, Volume 13 (2012), pp. 613-622 | Zbl

[17] Rassias, J. M.; Saadati, R.; Sadeghi, Gh.; Vahidi, J. On nonlinear stability in various random normed spaces, J. Inequal. Appl., Volume 2011 (2011), pp. 1-17 | DOI | Zbl

[18] Saadati, R.; Rassias, Th. M.; Cho, Y. J.; Wang, Z. H. Distribution and survival functions and application in intuitionistic random approximation, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2535-2540

[19] Saadati, R.; Vaezpour, S. M.; Cho, Y. J. A note to paper ”On the stability of cubic mappings and quartic mappings in random normed spaces” , J. Inequal. Appl., Volume 2009 (2009), pp. 1-6 | Zbl | DOI

[20] Vahidi, J.; Park, C.; R. Saadati A functional equation related to inner product spaces in non-Archimedean L-random normed spaces, J. Inequal. Appl., Volume 2012 (2012), pp. 1-16 | Zbl | DOI

Cité par Sources :