Fourier series of sums of products of poly-Bernoulli functions and their applications
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2384-2401.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider three types of sums of products of poly-Bernoulli functions and derive Fourier series expansions of them. In addition, we express those three types of functions in terms of Bernoulli functions.
DOI : 10.22436/jnsa.010.05.10
Classification : 11B68, 11B83, 42A16
Keywords: Fourier series, Bernoulli polynomial, poly-Bernoulli polynomial, poly-Bernoulli function.

Kim, Taekyun 1 ; Kim, Dae San 2 ; Dolgy, Dmitry V. 3 ; Park, Jin-Woo 4

1 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
2 Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
3 Hanrimwon, Kwangwoon University, Seoul 139-701, Republic of Korea
4 Department of Mathematics Education, Daegu University, Gyeongsan-si, Gyeongsangbuk-do, 712-714, Republic of Korea
@article{JNSA_2017_10_5_a9,
     author = {Kim, Taekyun and Kim, Dae San and Dolgy, Dmitry V. and Park, Jin-Woo},
     title = {Fourier series of sums of products of {poly-Bernoulli} functions and their applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2384-2401},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/}
}
TY  - JOUR
AU  - Kim, Taekyun
AU  - Kim, Dae San
AU  - Dolgy, Dmitry V.
AU  - Park, Jin-Woo
TI  - Fourier series of sums of products of poly-Bernoulli functions and their applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2384
EP  - 2401
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/
DO  - 10.22436/jnsa.010.05.10
LA  - en
ID  - JNSA_2017_10_5_a9
ER  - 
%0 Journal Article
%A Kim, Taekyun
%A Kim, Dae San
%A Dolgy, Dmitry V.
%A Park, Jin-Woo
%T Fourier series of sums of products of poly-Bernoulli functions and their applications
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2384-2401
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/
%R 10.22436/jnsa.010.05.10
%G en
%F JNSA_2017_10_5_a9
Kim, Taekyun; Kim, Dae San; Dolgy, Dmitry V.; Park, Jin-Woo. Fourier series of sums of products of poly-Bernoulli functions and their applications. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2384-2401. doi : 10.22436/jnsa.010.05.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/

[1] Arakawa, T.; Kaneko, M. On poly-Bernoulli numbers, Comment. Math. Univ. St. Paul., Volume 48 (1999), pp. 159-167

[2] Bayad, A.; Hamahata, Y. Multiple polylogarithms and multi-poly-Bernoulli polynomials, Funct. Approx. Comment. Math., Volume 46 (2012), pp. 45-61 | DOI | Zbl

[3] Dolgy, D. V.; Kim, D. S.; Kim, T.; Mansour, T. Degenerate poly-Bernoulli polynomials of the second kind, J. Comput. Anal. Appl., Volume 21 (2016), pp. 954-966 | Zbl

[4] Dunne, G. V.; Schubert, C. Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys., Volume 7 (2013), pp. 225-249 | DOI | Zbl

[5] Faber, C.; Pandharipande, R. Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | DOI

[6] Gessel, I. M. On Miki’s identity for Bernoulli numbers, J. Number Theory, Volume 110 (2005), pp. 75-82 | DOI

[7] Kaneko, M. Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, Volume 9 (1997), pp. 221-228

[8] Kim, D. S.; Dolgy, D. V.; Kim, T.; Rim, S.-H. Some formulae for the product of two Bernoulli and Euler polynomials, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-15

[9] Kim, D. S.; Kim, T. Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., Volume 2012 (2012), pp. 1-12

[10] Kim, D. S.; Kim, T. Some identities of higher order Euler polynomials arising from Euler basis, Integral Transforms Spec. Funct., Volume 24 (2013), pp. 734-738 | Zbl | DOI

[11] Kim, D. S.; Kim, T. A note on degenerate poly-Bernoulli numbers and polynomials, Adv. Difference Equ., Volume 2015 (2015), pp. 1-8 | DOI

[12] Kim, D. S.; Kim, T. A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys., Volume 22 (2015), pp. 26-33 | Zbl | DOI

[13] Kim, D. S.; Kim, T. Higher-order Bernoulli and poly-Bernoulli mixed type polynomials, Georgian Math. J., Volume 22 (2015), pp. 265-272 | Zbl | DOI

[14] Kim, D. S.; Kim, T.; Kwon, H. I.; Mansour, T. Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint, J. Inequal. Appl., Volume 2015 (2015), pp. 1-13 | Zbl | DOI

[15] Kim, D. S.; Kim, T.; Mansour, T.; Seo, J.-J. Fully degenerate poly-Bernoulli polynomials with a q parameter, Filomat, Volume 30 (2016), pp. 1029-1035 | Zbl | DOI

[16] Kim, T.; Kim, D. S.; Rim, S.-H.; Dolgy, D. V. Fourier series of higher-order Bernoulli functions and their applications, J. Inequal. Appl., Volume 2017 (2017), pp. 1-7 | DOI

[17] Kim, T.; Kim, D. S.; Seo, J.-J. Fully degenerate poly-Bernoulli numbers and polynomials, Open Math., Volume 14 (2016), pp. 545-556 | DOI | Zbl

[18] Marsden, J. E. Elementary classical analysis, With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, Istv´an F´ary and Robert Gulliver, W. H. Freeman and Co., San Francisco (1974)

[19] Shiratani, K.; Yokoyama, S. An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A, Volume 36 (1982), pp. 73-83 | DOI

[20] Young, P. T. Bernoulli and poly-Bernoulli polynomial convolutions and identities of p-adic Arakawa-Kaneko zeta functions, J. Number Theory, Volume 12 (2016), pp. 1295-1309 | Zbl | DOI

[21] Zill, D. G.; Cullen, M. R. Advanced engineering mathematics, second edition, Jones & Bartlett Learning, Massachusetts, 2000

Cité par Sources :