Voir la notice de l'article provenant de la source International Scientific Research Publications
Kim, Taekyun 1 ; Kim, Dae San 2 ; Dolgy, Dmitry V. 3 ; Park, Jin-Woo 4
@article{JNSA_2017_10_5_a9, author = {Kim, Taekyun and Kim, Dae San and Dolgy, Dmitry V. and Park, Jin-Woo}, title = {Fourier series of sums of products of {poly-Bernoulli} functions and their applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {2384-2401}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2017}, doi = {10.22436/jnsa.010.05.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/} }
TY - JOUR AU - Kim, Taekyun AU - Kim, Dae San AU - Dolgy, Dmitry V. AU - Park, Jin-Woo TI - Fourier series of sums of products of poly-Bernoulli functions and their applications JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2384 EP - 2401 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/ DO - 10.22436/jnsa.010.05.10 LA - en ID - JNSA_2017_10_5_a9 ER -
%0 Journal Article %A Kim, Taekyun %A Kim, Dae San %A Dolgy, Dmitry V. %A Park, Jin-Woo %T Fourier series of sums of products of poly-Bernoulli functions and their applications %J Journal of nonlinear sciences and its applications %D 2017 %P 2384-2401 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/ %R 10.22436/jnsa.010.05.10 %G en %F JNSA_2017_10_5_a9
Kim, Taekyun; Kim, Dae San; Dolgy, Dmitry V.; Park, Jin-Woo. Fourier series of sums of products of poly-Bernoulli functions and their applications. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2384-2401. doi : 10.22436/jnsa.010.05.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.10/
[1] On poly-Bernoulli numbers, Comment. Math. Univ. St. Paul., Volume 48 (1999), pp. 159-167
[2] Multiple polylogarithms and multi-poly-Bernoulli polynomials, Funct. Approx. Comment. Math., Volume 46 (2012), pp. 45-61 | DOI | Zbl
[3] Degenerate poly-Bernoulli polynomials of the second kind, J. Comput. Anal. Appl., Volume 21 (2016), pp. 954-966 | Zbl
[4] Bernoulli number identities from quantum field theory and topological string theory, Commun. Number Theory Phys., Volume 7 (2013), pp. 225-249 | DOI | Zbl
[5] Hodge integrals and Gromov-Witten theory, Invent. Math., Volume 139 (2000), pp. 173-199 | DOI
[6] On Miki’s identity for Bernoulli numbers, J. Number Theory, Volume 110 (2005), pp. 75-82 | DOI
[7] Poly-Bernoulli numbers, J. Théor. Nombres Bordeaux, Volume 9 (1997), pp. 221-228
[8] Some formulae for the product of two Bernoulli and Euler polynomials, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-15
[9] Bernoulli basis and the product of several Bernoulli polynomials, Int. J. Math. Math. Sci., Volume 2012 (2012), pp. 1-12
[10] Some identities of higher order Euler polynomials arising from Euler basis, Integral Transforms Spec. Funct., Volume 24 (2013), pp. 734-738 | Zbl | DOI
[11] A note on degenerate poly-Bernoulli numbers and polynomials, Adv. Difference Equ., Volume 2015 (2015), pp. 1-8 | DOI
[12] A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys., Volume 22 (2015), pp. 26-33 | Zbl | DOI
[13] Higher-order Bernoulli and poly-Bernoulli mixed type polynomials, Georgian Math. J., Volume 22 (2015), pp. 265-272 | Zbl | DOI
[14] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint, J. Inequal. Appl., Volume 2015 (2015), pp. 1-13 | Zbl | DOI
[15] Fully degenerate poly-Bernoulli polynomials with a q parameter, Filomat, Volume 30 (2016), pp. 1029-1035 | Zbl | DOI
[16] Fourier series of higher-order Bernoulli functions and their applications, J. Inequal. Appl., Volume 2017 (2017), pp. 1-7 | DOI
[17] Fully degenerate poly-Bernoulli numbers and polynomials, Open Math., Volume 14 (2016), pp. 545-556 | DOI | Zbl
[18] Elementary classical analysis, With the assistance of Michael Buchner, Amy Erickson, Adam Hausknecht, Dennis Heifetz, Janet Macrae and William Wilson, and with contributions by Paul Chernoff, Istv´an F´ary and Robert Gulliver, W. H. Freeman and Co., San Francisco (1974)
[19] An application of p-adic convolutions, Mem. Fac. Sci. Kyushu Univ. Ser. A, Volume 36 (1982), pp. 73-83 | DOI
[20] Bernoulli and poly-Bernoulli polynomial convolutions and identities of p-adic Arakawa-Kaneko zeta functions, J. Number Theory, Volume 12 (2016), pp. 1295-1309 | Zbl | DOI
[21] Advanced engineering mathematics, second edition, Jones & Bartlett Learning, Massachusetts, 2000
Cité par Sources :