Solvability of fractional p-Laplacian boundary value problems with controlled parameters
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2366-2383.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper aims to investigate existence of solutions of several boundary value problems for fractional one-dimensional p-Laplacian equation under controlled parameters. By employing fixed point theory and critical point theory, some new results are obtained, which enrich and generalize the previous results.
DOI : 10.22436/jnsa.010.05.09
Classification : 26A33, 34B15, 34G20
Keywords: Fractional ordinary differential equation, boundary value problem, p-Laplacian operator, existence.

Shen, Tengfei 1 ; Liu, Wenbin 1

1 School of Mathematics, China University of Mining and Technology, Xuzhou 221116, P. R. China
@article{JNSA_2017_10_5_a8,
     author = {Shen, Tengfei and Liu, Wenbin},
     title = {Solvability of fractional {p-Laplacian} boundary value problems with controlled parameters},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2366-2383},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.09/}
}
TY  - JOUR
AU  - Shen, Tengfei
AU  - Liu, Wenbin
TI  - Solvability of fractional p-Laplacian boundary value problems with controlled parameters
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2366
EP  - 2383
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.09/
DO  - 10.22436/jnsa.010.05.09
LA  - en
ID  - JNSA_2017_10_5_a8
ER  - 
%0 Journal Article
%A Shen, Tengfei
%A Liu, Wenbin
%T Solvability of fractional p-Laplacian boundary value problems with controlled parameters
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2366-2383
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.09/
%R 10.22436/jnsa.010.05.09
%G en
%F JNSA_2017_10_5_a8
Shen, Tengfei; Liu, Wenbin. Solvability of fractional p-Laplacian boundary value problems with controlled parameters. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2366-2383. doi : 10.22436/jnsa.010.05.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.09/

[1] Agarwal, R. P.; O’Regan, D.; Staněk, S. Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl., Volume 371 (2010), pp. 57-68 | DOI

[2] Agarwal, R. P.; Zhou, Y.; He, Y.-Y. Existence of fractional neutral functional differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1095-1100 | DOI

[3] Bai, C.-Z. Existence of positive solutions for boundary value problems of fractional functional differential equations , Electron. J. Qual. Theory Differ. Equ., Volume 2010 (2010), pp. 1-14

[4] Benchohra, M.; Henderson, J.; Ntouyas, S. K.; Ouahab, A. Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., Volume 338 (2008), pp. 1340-1350 | DOI

[5] Bergounioux, M.; Leaci, A.; Nardi, G.; Tomarelli, F. Fractional Sobolev spaces and functions of bounded variation, ArXiv, Volume 2016 (2016), pp. 1-19

[6] Bonanno, G.; Riccobono, G. Multiplicity results for Sturm-Liouville boundary value problems, Appl. Math. Comput., Volume 210 (2009), pp. 294-297 | DOI

[7] Bonanno, G.; Rodríguez-López, R.; Tersian, S. Existence of solutions to boundary value problem for impulsive fractional differential equations, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 717-744 | DOI

[8] Bonheure, D.; Habets, P.; Obersnel, F.; Omari, P. Classical and non-classical solutions of a prescribed curvature equation, J. Differential Equations, Volume 243 (2007), pp. 208-237 | DOI

[9] Cerami, G. An existence criterion for the critical points on unbounded manifolds, (Italian) Istit. Lombardo Accad. Sci. Lett. Rend. A, Volume 112 (1978), pp. 332-336

[10] Chen, T.-Y.; Liu, W.-B. Solvability of fractional boundary value problem with p-Laplacian via critical point theory, Bound. Value Probl., Volume 2016 (2016), pp. 1-12 | Zbl | DOI

[11] Du, B.; Hu, X.-P.; Ge, W.-G. Positive solutions to a type of multi-point boundary value problem with delay and onedimensional p-Laplacian, Appl. Math. Comput., Volume 208 (2009), pp. 501-510 | Zbl | DOI

[12] Ekeland, I. Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Springer-Verlag, Berlin, 1990 | DOI

[13] Fečkan, M.; Zhou, Y.; Wang, J.-R. On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 3050-3060 | DOI

[14] Guo, D. J.; Lakshmikantham, V. Nonlinear problems in abstract cones, Notes and Reports in Mathematics in Science and Engineering, Academic Press, Inc., Boston, MA, 1988

[15] Idczak, D.; Walczak, S. Fractional Sobolev spaces via Riemann-Liouville derivatives, J. Funct. Spaces Appl., Volume 2013 (2013), pp. 1-15 | Zbl | DOI

[16] Jiang, W.-H. The existence of solutions to boundary value problems of fractional differential equations at resonance, Nonlinear Anal., Volume 74 (2011), pp. 1987-1994 | DOI

[17] Jiao, F.; Zhou, Y. Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., Volume 62 (2011), pp. 1181-1199 | DOI | Zbl

[18] Jiao, F.; Zhou, Y. Existence results for fractional boundary value problem via critical point theory, Internat. J. Bifur. Chaos Appl. Sci. Engrg., Volume 22 (2012), pp. 1-17 | DOI

[19] Jin, H.; Liu, W.-B. Eigenvalue problem for fractional differential operator containing left and right fractional derivatives, Adv. Difference Equ., Volume 2016 (2016), pp. 1-12 | DOI

[20] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006

[21] Kosmatov, N. A boundary value problem of fractional order at resonance, Electron. J. Differential Equations, Volume 2010 (2010), pp. 1-10

[22] Lakshmikantham, V. Theory of fractional functional differential equations, Nonlinear Anal., Volume 69 (2008), pp. 3337-3343 | DOI

[23] Lan, K. Q.; Lin, W. Positive solutions of systems of Caputo fractional differential equations, Commun. Appl. Anal., Volume 17 (2013), pp. 61-85

[24] Leszczynski, J.; Blaszczyk, T. Modeling the transition between stable and unstable operation while emptying a silo, Granul. Matter, Volume 13 (2011), pp. 429-438

[25] Liu, Y.-J.; Ge, W.-G. Multiple positive solutions to a three-point boundary value problem with p-Laplacian, J. Math. Anal. Appl., Volume 277 (2003), pp. 293-302 | DOI

[26] Mainardi, F. Fractional diffusive waves in viscoelastic solids, J. L. Wegner, F. R. Norwood (Eds.), IUTAM Symposium– Nonlinear Waves in Solids, ASME/AMR, Fairfield, NJ (1995), pp. 93-97

[27] Mawhin, J. Some boundary value problems for Hartman-type perturbations of the ordinary vector p-Laplacian, Lakshmikantham’s legacy: a tribute on his 75th birthday, Nonlinear Anal., Volume 40 (2000), pp. 497-503 | Zbl | DOI

[28] Mawhin, J.; Willem, M. Critical point theory and Hamiltonian systems, Applied Mathematical Sciences, Springer- Verlag, New York, 1989

[29] Morgado, M. L.; Ford, N. J.; Lima, P. M. Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., Volume 252 (2013), pp. 159-168 | DOI

[30] Podlubny, I. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, Academic Press, Inc., San Diego, CA, 1999

[31] Rabinowitz, P. H. Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986 | DOI

[32] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Theory and applications, Edited and with a foreword by S. M. Nikolski˘ı, Translated from the 1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers, Yverdon, 1993

[33] Shen, T.-F.; Liu, W.-B.; Shen, X.-H. Existence and uniqueness of solutions for several BVPs of fractional differential equations with p-Laplacian operator, Mediterr. J. Math., Volume 13 (2016), pp. 4623-4637 | DOI | Zbl

[34] Simon, J. Régularité de la solution d’un probléme aux limites non linéaires, (French) [[Regularity of the solution of a nonlinear boundary problem]] Ann. Fac. Sci. Toulouse Math., Volume 3 (1981), pp. 247-274 | DOI | EuDML | Zbl

[35] Szymanek, E. The application of fractional order differential calculus for the description of temperature profiles in a granular layer, Adv. Theory Appl. Non-integer Order Syst., Springer Inter. Publ., Switzerland, 2013 | DOI

[36] Tang, X. H.; Xiao, L. Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential, Nonlinear Anal., Volume 71 (2009), pp. 1124-1132 | DOI | Zbl

[37] Tian, Y.; Ge, W.-G. Second-order Sturm-Liouville boundary value problem involving the one-dimensional p-Laplacian, Rocky Mountain J. Math., Volume 38 (2008), pp. 309-327 | DOI | Zbl

[38] Torres, C. Mountain pass solution for a fractional boundary value problem, J. Fract. Calc. Appl., Volume 5 (2014), pp. 1-10

[39] Zhou, Y.; Jiao, F.; Li, J. Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., Volume 71 (2009), pp. 3249-3256 | DOI

Cité par Sources :