Fixed point results for generalized contractive multivalued maps
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2359-2365.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we prove some results on the existence of fixed points for multivalued maps with respect to general distance. Our results improve and generalize a number of known fixed point results including the fixed point results.
DOI : 10.22436/jnsa.010.05.08
Classification : 47H10, 47H50
Keywords: Metric space, fixed point, w-distance, multivalued contractive map, Banach limit.

Alkhammash, Aljazi M. 1 ; Abdou, Afrah A. N. 2 ; Latif, Abdul 1

1 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, King Abdulaziz University, AL Faisaliah Campus, Jeddah, Saudi Arabia
@article{JNSA_2017_10_5_a7,
     author = {Alkhammash, Aljazi M. and Abdou, Afrah A. N. and Latif, Abdul},
     title = {Fixed point results for generalized contractive multivalued maps},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2359-2365},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.08/}
}
TY  - JOUR
AU  - Alkhammash, Aljazi M.
AU  - Abdou, Afrah A. N.
AU  - Latif, Abdul
TI  - Fixed point results for generalized contractive multivalued maps
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2359
EP  - 2365
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.08/
DO  - 10.22436/jnsa.010.05.08
LA  - en
ID  - JNSA_2017_10_5_a7
ER  - 
%0 Journal Article
%A Alkhammash, Aljazi M.
%A Abdou, Afrah A. N.
%A Latif, Abdul
%T Fixed point results for generalized contractive multivalued maps
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2359-2365
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.08/
%R 10.22436/jnsa.010.05.08
%G en
%F JNSA_2017_10_5_a7
Alkhammash, Aljazi M.; Abdou, Afrah A. N.; Latif, Abdul. Fixed point results for generalized contractive multivalued maps. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2359-2365. doi : 10.22436/jnsa.010.05.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.08/

[1] Chuang, C.-S.; Lin, L.-J.; Takahashi, W. Fixed point theorems for single-valued and set-valued mappings on complete metric spaces, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 515-527

[2] Feng, Y.-Q.; Liu, S.-Y. Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings, J. Math. Anal. Appl., Volume 317 (2006), pp. 103-112 | Zbl | DOI

[3] Hasegawa, K.; Komiya, T.; Takahashi, W. Fixed point theorems for general contractive mappings in metric spaces and estimating expressions, Sci. Math. Jpn., Volume 74 (2011), pp. 15-27 | Zbl

[4] Husain, T.; Latif, A. Fixed points of multivalued nonexpansive maps, Internat. J. Math. Math. Sci., Volume 14 (1991), pp. 421-430

[5] Kada, O.; Suzuki, T.; Takahashi, W. Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon., Volume 44 (1996), pp. 381-391

[6] Kikkawa, M.; Suzuki, T. Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., Volume 69 (2008), pp. 2942-2949 | Zbl | DOI

[7] Klim, D.; Wardowski, D. Fixed point theorems for set-valued contractions in complete metric spaces, J. Math. Anal. Appl., Volume 334 (2007), pp. 132-139 | DOI

[8] Latif, A.; Abdou, A. A. N. Fixed points of generalized contractive maps, Fixed Point Theory Appl., Volume 2009 (2009), pp. 1-9 | DOI

[9] Latif, A.; Abdou, A. A. N. Multivalued generalized nonlinear contractive maps and fixed points, Nonlinear Anal., Volume 74 (2011), pp. 1436-1444 | DOI

[10] Latif, A.; Albar, W. A. Fixed point results in complete metric spaces, Demonstratio Math., Volume 41 (2008), pp. 145-150 | DOI

[11] Lin, L.-J.; Yu, T. Z.; Kassay, G. Existence of equilibria for multivalued mappings and its application to vectorial equilibria, J. Optim. Theory Appl., Volume 114 (2002), pp. 189-208 | Zbl | DOI

[12] Minh, N. B.; Tan, N. X. Some sufficient conditions for the existence of equilibrium points concerning multivalued mappings, Vietnam J. Math., Volume 28 (2000), pp. 295-310 | Zbl

[13] Nadler, S. B.; Jr. Multi-valued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[14] Qin, X.-L.; Cho, S. Y. Convergence analysis of a monotone projection algorithm in reflexive Banach spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 37 (2017), pp. 488-502 | Zbl | DOI

[15] Shukla, S. Set-valued generalized contractions in 0-complete partial metric spaces, J. Nonlinear Funct. Anal., Volume 2014 (2014), pp. 1-20

[16] Suzuki, T. A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., Volume 136 (2008), pp. 1861-1869 | DOI

[17] Suzuki, T.; Takahashi, W. Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal., Volume 8 (1996), pp. 371-382 | DOI

[18] Takahashi, W. Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed point theory and applications, Marseille, (1989), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, Volume 252 (1991), pp. 397-406 | DOI

[19] Takahashi, W. Nonlinear functional analysis, Fixed point theory and its applications, Yokohama Publishers, Yokohama, 2000

[20] Takahashi, W.; Wong, N.-C.; Yao, J.-C. Fixed point theorems for general contractive mappings with W-distances in metric spaces, J. Nonlinear Convex Anal., Volume 14 (2013), pp. 637-648 | Zbl

[21] Zhao, F.-H.; Yang, L. Hybrid projection methods for equilibrium problems and fixed point problems of infinite family of multivalued asymptotically nonexpansive mappings, J. Nonlinear Funct. Anal., Volume 2016 (2016), pp. 1-13

Cité par Sources :