On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2340-2349.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, some new integral representations are proved for several weighted hypergeometric functions introduced recently in [J. E. Restrepo, A. Kılıc¸man, P. Agarwal, O. Altun, Adv. Difference Equ., 2017 (2017), 11 pages]. Besides, some new subclasses of weighted hypergeometric functions containing the Djrbashian Cauchy type kernel are introduced. The series representing the considered hypergeometric functions are convergent out of some sets of zero !-capacity, and these hypergeometric functions have finite boundary values everywhere on $|z|=1$, out of zero $\omega$-capacity sets.
DOI : 10.22436/jnsa.010.05.06
Classification : 33C20, 31A10, 31A20
Keywords: Weighted hypergeometric function, Djrbashian Cauchy type kernel, \(\omega\)-capacity, boundary behavior.

Restrepo, Joel Esteban 1 ; Jerbashian, Armen 1 ; Agarwal, Praveen 2

1 Institute of Mathematics, University of Antioquia, Cl. 53 - 108, Medellin, Colombia
2 Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India
@article{JNSA_2017_10_5_a5,
     author = {Restrepo, Joel Esteban and Jerbashian, Armen and Agarwal, Praveen},
     title = {On some subclasses of hypergeometric functions with {Djrbashian} {Cauchy} type kernel},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2340-2349},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/}
}
TY  - JOUR
AU  - Restrepo, Joel Esteban
AU  - Jerbashian, Armen
AU  - Agarwal, Praveen
TI  - On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2340
EP  - 2349
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/
DO  - 10.22436/jnsa.010.05.06
LA  - en
ID  - JNSA_2017_10_5_a5
ER  - 
%0 Journal Article
%A Restrepo, Joel Esteban
%A Jerbashian, Armen
%A Agarwal, Praveen
%T On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2340-2349
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/
%R 10.22436/jnsa.010.05.06
%G en
%F JNSA_2017_10_5_a5
Restrepo, Joel Esteban; Jerbashian, Armen; Agarwal, Praveen. On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2340-2349. doi : 10.22436/jnsa.010.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/

[1] Agarwal, P.; Choi, J.-S.; Kachhia, K. B.; Prajapati, J. C.; Zhou, H. Some integral transforms and fractional integral formulas for the extended hypergeometric functions, Commun. Korean Math. Soc., Volume 31 (2016), pp. 591-601 | Zbl | DOI

[2] Bailey, W. N. Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, Stechert-Hafner, Inc., New York, 1964

[3] Chaudhry, M. A.; Qadir, A.; Rafique, M.; Zubair, S. M. Extension of Euler’s beta function, J. Comput. Appl. Math., Volume 78 (1997), pp. 19-32 | DOI

[4] Chaudhry, M. A.; Qadir, A.; Srivastava, H. M.; Paris, R. B. Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., Volume 159 (2004), pp. 589-602 | DOI

[5] Dzhrbashyan, A. M. An extension of the factorization theory of M. M. Dzhrbashyan, (Russian); translated from Izv. Nats. Akad. Nauk Armenii Mat., 30 (1995), 47–75, J. Contemp. Math. Anal., Volume 30 (1995), pp. 39-61

[6] Dzhrbashyan, M. M.; Zakharyan, V. S. Klassy i granichnye svoĭstva funktsiĭ, meromorfnykh v kruge, (Russian) [[Classes and boundary properties of functions that are meromorphic in the disk]] Fizmatlit “Nauka”, Moscow, 1993

[7] Džrbašjan, M. M. Theory of factorization and boundary properties of functions meromorphic in the disk, Proceedings of the International Congress of Mathematician, Vancouver, B. C., (1974), Canad. Math. Congress, Montreal, Que., Volume 2 (1975), pp. 197-202 | Zbl

[8] Frostman, O. Potentiel d’équilibre et capacité des ensembles avec quelques applications a la théorie des fonctions, (French) Madd. Lunds. Univ. Mat. Sem., Volume 3 (1935), pp. 1-11 | Zbl

[9] Frostman, O. Sur les produits de Blaschke, Fysiogr. Säldsk. Lund, föhr., Volume 12 (1939), pp. 1-14

[10] Frostman, O. Sur les produits de Blaschke, (French) Kungl. Fysiografiska S¨allskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund], Volume 12 (1942), pp. 169-182 | Zbl

[11] Kiymaz, I. O.; Çetinkaya, A.; Agarwal, P. An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 3611-3621 | Zbl

[12] Kuroda, L. K. B.; Gomes, A. V.; Tavoni, R.; Mancera, P. F. de Arruda; Varalta, N.; Camargo, R. de Figueiredo Unexpected behavior of Caputo fractional derivative, Comput. Appl. Math., Volume 36 (2017), pp. 1173-1183 | DOI | Zbl

[13] Özergin, E. Some properties of hypergeometric functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, Turkey, 2011

[14] Restrepo, J. E.; Kılıçman, A.; Agarwal, P.; Altun, O. Weighted hypergeometric functions and fractional derivative, Adv. Difference Equ., Volume 2017 (2017), pp. 1-11 | DOI

[15] Tarasov, V. E. Some identities with generalized hypergeometric functions, Appl. Math. Inf. Sci., Volume 10 (2016), pp. 1729-1734

[16] Yang, X.-J.; Baleanu, D.; Srivastava, H. M. Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2016 | DOI | Zbl

[17] Yang, X.-J.; Srivastava, H. M. An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 499-504 | DOI

Cité par Sources :