Voir la notice de l'article provenant de la source International Scientific Research Publications
Restrepo, Joel Esteban 1 ; Jerbashian, Armen 1 ; Agarwal, Praveen 2
@article{JNSA_2017_10_5_a5, author = {Restrepo, Joel Esteban and Jerbashian, Armen and Agarwal, Praveen}, title = {On some subclasses of hypergeometric functions with {Djrbashian} {Cauchy} type kernel}, journal = {Journal of nonlinear sciences and its applications}, pages = {2340-2349}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2017}, doi = {10.22436/jnsa.010.05.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/} }
TY - JOUR AU - Restrepo, Joel Esteban AU - Jerbashian, Armen AU - Agarwal, Praveen TI - On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2340 EP - 2349 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/ DO - 10.22436/jnsa.010.05.06 LA - en ID - JNSA_2017_10_5_a5 ER -
%0 Journal Article %A Restrepo, Joel Esteban %A Jerbashian, Armen %A Agarwal, Praveen %T On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel %J Journal of nonlinear sciences and its applications %D 2017 %P 2340-2349 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/ %R 10.22436/jnsa.010.05.06 %G en %F JNSA_2017_10_5_a5
Restrepo, Joel Esteban; Jerbashian, Armen; Agarwal, Praveen. On some subclasses of hypergeometric functions with Djrbashian Cauchy type kernel. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2340-2349. doi : 10.22436/jnsa.010.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.06/
[1] Some integral transforms and fractional integral formulas for the extended hypergeometric functions, Commun. Korean Math. Soc., Volume 31 (2016), pp. 591-601 | Zbl | DOI
[2] Generalized hypergeometric series, Cambridge Tracts in Mathematics and Mathematical Physics, Stechert-Hafner, Inc., New York, 1964
[3] Extension of Euler’s beta function, J. Comput. Appl. Math., Volume 78 (1997), pp. 19-32 | DOI
[4] Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., Volume 159 (2004), pp. 589-602 | DOI
[5] An extension of the factorization theory of M. M. Dzhrbashyan, (Russian); translated from Izv. Nats. Akad. Nauk Armenii Mat., 30 (1995), 47–75, J. Contemp. Math. Anal., Volume 30 (1995), pp. 39-61
[6] Klassy i granichnye svoĭstva funktsiĭ, meromorfnykh v kruge, (Russian) [[Classes and boundary properties of functions that are meromorphic in the disk]] Fizmatlit “Nauka”, Moscow, 1993
[7] Theory of factorization and boundary properties of functions meromorphic in the disk, Proceedings of the International Congress of Mathematician, Vancouver, B. C., (1974), Canad. Math. Congress, Montreal, Que., Volume 2 (1975), pp. 197-202 | Zbl
[8] Potentiel d’équilibre et capacité des ensembles avec quelques applications a la théorie des fonctions, (French) Madd. Lunds. Univ. Mat. Sem., Volume 3 (1935), pp. 1-11 | Zbl
[9] Sur les produits de Blaschke, Fysiogr. Säldsk. Lund, föhr., Volume 12 (1939), pp. 1-14
[10] Sur les produits de Blaschke, (French) Kungl. Fysiografiska S¨allskapets i Lund Förhandlingar [Proc. Roy. Physiog. Soc. Lund], Volume 12 (1942), pp. 169-182 | Zbl
[11] An extension of Caputo fractional derivative operator and its applications, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 3611-3621 | Zbl
[12] Unexpected behavior of Caputo fractional derivative, Comput. Appl. Math., Volume 36 (2017), pp. 1173-1183 | DOI | Zbl
[13] Some properties of hypergeometric functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, Turkey, 2011
[14] Weighted hypergeometric functions and fractional derivative, Adv. Difference Equ., Volume 2017 (2017), pp. 1-11 | DOI
[15] Some identities with generalized hypergeometric functions, Appl. Math. Inf. Sci., Volume 10 (2016), pp. 1729-1734
[16] Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2016 | DOI | Zbl
[17] An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., Volume 29 (2015), pp. 499-504 | DOI
Cité par Sources :