Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2324-2339.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, Whitham–Broer–Kaup (WBK) equations with time-dependent coefficients are exactly solved through Hirota’s bilinear method. To be specific, the WBK equations are first reduced into a system of variable-coefficient Ablowitz–Kaup– Newell–Segur (AKNS) equations. With the help of the AKNS equations, bilinear forms of the WBK equations are then given. Based on a special case of the bilinear forms, new one-soliton solutions, two-soliton solutions, three-soliton solutions and the uniform formulae of n-soliton solutions are finally obtained. It is graphically shown that the dynamical evolutions of the obtained one-, two- and three-soliton solutions possess time-varying amplitudes in the process of propagations.
DOI : 10.22436/jnsa.010.05.05
Classification : 35Q51, 35Q53, 35Q99
Keywords: Bilinear form, soliton solution, WKB equations with time-dependent coefficients, Hirota’s bilinear method.

Zhang, Sheng 1 ; Wang, Zhaoyu 1

1 School of Mathematics and Physics, Bohai University, Jinzhou 121013, China
@article{JNSA_2017_10_5_a4,
     author = {Zhang, Sheng and Wang, Zhaoyu},
     title = {Bilinearization and new soliton solutions of {Whitham-Broer-Kaup} equations with time-dependent coefficients},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2324-2339},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/}
}
TY  - JOUR
AU  - Zhang, Sheng
AU  - Wang, Zhaoyu
TI  - Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2324
EP  - 2339
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/
DO  - 10.22436/jnsa.010.05.05
LA  - en
ID  - JNSA_2017_10_5_a4
ER  - 
%0 Journal Article
%A Zhang, Sheng
%A Wang, Zhaoyu
%T Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2324-2339
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/
%R 10.22436/jnsa.010.05.05
%G en
%F JNSA_2017_10_5_a4
Zhang, Sheng; Wang, Zhaoyu. Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2324-2339. doi : 10.22436/jnsa.010.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/

[1] Ablowitz, M. J.; Clarkson, P. A. Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991 | DOI

[2] Arshad, M.; Seadawy, A. R.; Lu, D.-C.; Wang, J. Travelling wave solutions of Drinfeld-Sokolov-Wilson, Whitham-Broer- Kaup and (2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications, Chin. J. Phys. (2017) | DOI

[3] Baleanu, D.; Agheli, B.; Darzi, R. Analysis of the new technique to solution of fractional wave- and heat-like equation, Acta Phys. Polon. B, Volume 48 (2017), pp. 77-95

[4] Baleanu, D.; Kilic, B.; Inc, M. The first integral method for Wu-Zhang nonlinear system with time-dependent coefficients, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., Volume 16 (2015), pp. 160-167

[5] Chen, D. Y. Introduction of soliton, (Chinese), Science Press, Beijing, 2006

[6] Chen, S.-H.; Grelu, P.; Mihalache, D.; Baronio, F. Families of rational solutions of the Kadomtsev-Petviashvili equation, Romanian Rep. Phys., Volume 68 (2016), pp. 1407-1424

[7] Chen, Y.; Wang, Q. Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer- Kaup equation, Phys. Lett. A, Volume 347 (2005), pp. 215-227 | Zbl | DOI

[8] Chen, Y.; Wang, Q.; Li, B. A generalized method and general form solutions to the Whitham-Broer-Kaup equation, Chaos Solitons Fractals, Volume 22 (2004), pp. 675-682 | Zbl | DOI

[9] Chen, Y.; Wang, Q.; Li, B. Elliptic equation rational expansion method and new exact travelling solutions for Whitham- Broer-Kaup equations, Chaos Solitons Fractals, Volume 26 (2005), pp. 231-246 | Zbl | DOI

[10] Chen, D. Y.; Zhu, X. Y.; Zhang, J. B.; Sun, Y. Y.; Shi, Y. New soliton solutions to isospectral AKNS equations, (Chinese) ; translated from Chinese Ann. Math. Ser. A, 33 (2012), 205–216, Chinese J. Contemp. Math., Volume 33 (2012), pp. 167-176 | Zbl | DOI

[11] El-Sayed, S. M.; Kaya, D. Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., Volume 167 (2005), pp. 1339-1349 | DOI | Zbl

[12] Fan, E.-G. Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Phys. Lett. A, Volume 300 (2002), pp. 243-249 | DOI | Zbl

[13] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M. Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., Volume 19 (1967), pp. 1095-1097 | DOI

[14] He, J.-H.; Wu, X.-H. Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, Volume 30 (2006), pp. 700-708 | DOI

[15] Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., Volume 27 (1971), pp. 1192-1194 | DOI | Zbl

[16] Hirota, R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan, Volume 33 (1972), pp. 1456-1458 | DOI

[17] Inc, M. Constructing solitary pattern solutions of the nonlinear dispersive Zakharov-Kuznetsov equation, Chaos Solitons Fractals, Volume 39 (2009), pp. 109-119 | DOI | Zbl

[18] Inç, M. On new exact special solutions of the GNLS(m, n, p, q) equations, Modern Phys. Lett. B, Volume 24 (2010), pp. 1769-1783 | Zbl | DOI

[19] Inç, M. Compact and noncompact structures of a three-dimensional 3DKP(m, n) equation with nonlinear dispersion, Appl. Math. Lett., Volume 26 (2013), pp. 437-444 | DOI | Zbl

[20] Inç, M. Some special structures for the generalized nonlinear Schrödinger equation with nonlinear dispersion, Waves Random Complex Media, Volume 23 (2013), pp. 77-88 | DOI

[21] Inç, M.; Ates, E. Optical soliton solutions for generalized NLSE by using Jacobi elliptic functions, Optoelectron. Adv. Mat., Volume 9 (2015), pp. 1081-1087

[22] Inç, M.; Kilic, B.; Baleanu, D. Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients, Optik, Volume 127 (2016), pp. 1056-1058 | DOI

[23] Inç, M.; Korpinar, Z. S.; Qurashi, M. M. Al; Baleanu, D. A new method for approximate solutions of some nonlinear equations: residual power series method, Adv. Mech. Eng., Volume 8 (2016), pp. 1-8 | DOI

[24] Jiao, X.-Y.; Zhang, H.-Q. An extended method and its application to Whitham-Broer-Kaup equation and two-dimensional perturbed KdV equation, Appl. Math. Comput., Volume 172 (2006), pp. 664-677 | DOI | Zbl

[25] Khalfallah, M. Exact traveling wave solutions of the Boussinesq-Burgers equation, Math. Comput. Modelling, Volume 49 (2009), pp. 666-671 | DOI

[26] Kumar, D.; Singh, J.; Baleanu, D. A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dynam., Volume 87 (2017), pp. 511-517 | Zbl | DOI

[27] Lin, G.-D.; Gao, Y.-T.; Wang, L.; Meng, D.-X.; Yu, X. Elastic-inelastic-interaction coexistence and double Wronskian solutions for the Whitham-Broer-Kaup shallow-water-wave model, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 3090-3096 | DOI | Zbl

[28] Liu, Y.-B.; Fokas, A. S.; Mihalache, D.; He, J.-S. Parallel line rogue waves of the third-type Davey-Stewartson equation, Romanian Rep. Phys., Volume 68 (2016), pp. 1425-1446

[29] Liu, Q. P.; Hu, X.-B.; Zhang, M.-X. Supersymmetric modified Korteweg-de Vries equation: bilinear approach, Nonlinearity, Volume 18 (2005), pp. 1597-1603 | Zbl | DOI

[30] Liu, Y.; Liu, X.-Q. Exact solutions of Whitham-Broer-Kaup equations with variable coefficients, Acta Phys. Sin., Volume 63 (2014), pp. 1-9

[31] Matveev, V. B.; Salle, M. A. Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer- Verlag, Berlin, 1991

[32] McArthur, I. N.; Yung, C. M. Hirota bilinear form for the super-KdV hierarchy, Modern Phys. Lett. A, Volume 8 (1993), pp. 1739-1745 | DOI | Zbl

[33] Miura, M. R. Bäcklund transformation, Springer-Verlag, Berlin, 1978

[34] Mohebbi, A.; Asgari, Z.; Dehghan, M. Numerical solution of nonlinear Jaulent-Miodek and Whitham-Broer-Kaup equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4602-4610 | DOI | Zbl

[35] Mohyud-Din, S. T.; Yıldırım, A.; Demirli, G. Traveling wave solutions of Whitham-Broer-Kaup equations by homotopy perturbation method, J. King Saud Univ. Sci., Volume 22 (2010), pp. 173-176 | DOI

[36] Rafei, M.; Daniali, H. Application of the variational iteration method to the Whitham-Broer-Kaup equations, Comput. Math. Appl., Volume 54 (2007), pp. 1079-1085 | Zbl | DOI

[37] Serkin, V. N.; Hasegawa, A. Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., Volume 85 (2000), pp. 4502-4505 | DOI

[38] Serkin, V. N.; Hasegawa, A.; Belyaeva, T. L. Nonautonomous solitons in external potentials, Phys. Rev. Lett., Volume 98 (2007), pp. 1-4 | DOI

[39] Serkin, V. N.; Hasegawa, A.; Belyaeva, T. L. Nonautonomous matter-wave solitons near the Feshbach resonance, Phys. Rev. A, Volume 81 (2010), pp. 1-19 | DOI

[40] Shen, J.-W.; Xu, W.; Jin, Y.-F. Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation, Appl. Math. Comput., Volume 171 (2005), pp. 677-702 | DOI | Zbl

[41] Song, M.; Cao, J.; Guan, X.-L. Application of the bifurcation method to the Whitham-Broer-Kaup-like equations, Math. Comput. Modelling, Volume 52 (2012), pp. 688-696 | Zbl | DOI

[42] Triki, H.; Leblond, H.; Mihalache, D. Soliton solutions of nonlinear diffusion-reaction-type equations with time-dependent coefficients accounting for long-range diffusion, Nonlinear Dynam., Volume 86 (2016), pp. 2115-2126 | DOI

[43] Triki, H.; Wazwaz, A.-M. Soliton solutions of the cubic-quintic nonlinear Schrodinger equation with variable coefficients, Romanian J. Phys., Volume 61 (2016), pp. 360-366

[44] Wang, M.-L. Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, Volume 213 (1996), pp. 279-287 | DOI

[45] Wazwaz, A.-M. The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera Kadomtsev-Petviashvili equation, Appl. Math. Comput., Volume 200 (2008), pp. 160-166 | DOI | Zbl

[46] Weiss, J.; Tabor, M.; Carnevale, G. The Painlevé property for partial differential equations, J. Math. Phys., Volume 24 (1983), pp. 522-526 | DOI

[47] Wen, X.-Y. A new integrable lattice hierarchy associated with a discrete \(3 \times 3\) matrix spectral problem: N-fold Darboux transformation and explicit solutions, Rep. Math. Phys., Volume 71 (2013), pp. 15-32 | Zbl | DOI

[48] Xie, F.-D.; Yan, Z.-Y.; Zhang, H.-Q. Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations, Phys. Lett. A, Volume 285 (2001), pp. 76-80 | Zbl | DOI

[49] Xu, G.-Q.; Li, Z.-B. Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations, Chaos Solitons Fractals, Volume 24 (2005), pp. 549-556 | Zbl | DOI

[50] Xu, S.-W.; Porsezian, K.; He, J.-S.; Cheng, Y. Multi-optical rogue waves of the Maxwell-Bloch equations, Romanian Rep. Phys., Volume 68 (2016), pp. 316-340

[51] Yan, Z.-L.; Liu, X.-Q. Solitary wave and non-traveling wave solutions to two nonlinear evolution equations, Commun. Theor. Phys. (Beijing), Volume 44 (2005), pp. 479-482 | DOI

[52] Yan, Z.-Y.; Zhang, H.-Q. New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water, Phys. Lett. A, Volume 285 (2001), pp. 355-362 | DOI | Zbl

[53] Yan, Z.-L.; Zhou, J.-P. New explicit solutions of (1 + 1)-dimensional variable-coefficient Broer-Kaup system, Commun. Theor. Phys. (Beijing), Volume 54 (2010), pp. 965-970 | DOI | Zbl

[54] Yang, X.-J.; Baleanu, D.; Srivastava, H. M. Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2015 | DOI | Zbl

[55] Zhang, S. Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, Volume 365 (2007), pp. 448-453 | DOI

[56] Zhang, S. Exact solutions of a KdV equation with variable coefficients via Exp-function method, Nonlinear Dynam., Volume 52 (2008), pp. 11-17 | DOI | Zbl

[57] Zhang, P. New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations, Appl. Math. Comput., Volume 217 (2010), pp. 1688-1696 | DOI | Zbl

[58] Zhang, S.; Cai, B. Multi-soliton solutions of a variable-coefficient KdV hierarchy, Nonlinear Dynam., Volume 78 (2014), pp. 1593-1600 | DOI

[59] Zhang, S.; Chen, M.-T. Painlevé integrability and new exact solutions of the (4 + 1)-dimensional Fokas equation, Math. Probl. Eng., Volume 2015 (2015), pp. 1-8

[60] Zhang, S.; Chen, M.-T.; Qian, W.-Y. Painlevé analysis for a forced Korteveg-de Vries equation arisen in fluid dynamics of internal solitary waves, Therm. Sci., Volume 19 (2015), pp. 1223-1226

[61] Zhang, S.; Gao, X.-D. Mixed spectral AKNS hierarchy from linear isospectral problem and its exact solutions, Open Phys., Volume 13 (2015), pp. 310-322

[62] Zhang, S.; Gao, X.-D. Exact N-soliton solutions and dynamics of a new AKNS equation with time-dependent coefficients, Nonlinear Dynam., Volume 83 (2016), pp. 1043-1052 | Zbl | DOI

[63] Zhang, S.; Liu, D. Multisoliton solutions of a (2 + 1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method, Canad. J. Phys., Volume 92 (2014), pp. 184-190 | DOI

[64] Zhang, S.; Liu, D.-D. The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations, Turkish J. Phys., Volume 39 (2015), pp. 165-177

[65] Zhang, S.; Tian, C.; Qian, W.-Y. Bilinearization and new multisoliton solutions for the (4 + 1)-dimensional Fokas equation, Pramana, Volume 86 (2016), pp. 1259-1267 | DOI

[66] Zhang, S.; Wang, D. Variable-coefficient nonisospectral Toda lattice hierarchy and its exact solutions, Pramana, Volume 85 (2015), pp. 1143-1156 | DOI

[67] Zhang, S.; Xia, T.-C. A generalized F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations, Appl. Math. Comput., Volume 183 (2006), pp. 1190-1200 | DOI | Zbl

[68] Zhang, S.; Xia, T.-C. A generalized auxiliary equation method and its application to (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, J. Phys. A, Volume 40 (2007), pp. 227-248 | DOI | Zbl

[69] Zhang, S.; Xu, B.; Zhang, H.-Q. Exact solutions of a KdV equation hierarchy with variable coefficients, Int. J. Comput. Math., Volume 91 (2014), pp. 1601-1616 | DOI | Zbl

[70] Zhang, S.; Zhang, H.-Q. An Exp-function method for a new N-soliton solutions with arbitrary functions of a (2 + 1)- dimensional vcBK system, Comput. Math. Appl., Volume 61 (2011), pp. 1923-1930 | DOI | Zbl

[71] Zhang, S.; Zhang, H.-Q. Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, Volume 375 (2011), pp. 1069-1073 | DOI | Zbl

[72] Zhang, S.; Zhang, L.-Y. Bilinearization and new multi-soliton solutions of mKdV hierarchy with time-dependent coefficients, Open Phys., Volume 14 (2016), pp. 69-75 | DOI

Cité par Sources :