Voir la notice de l'article provenant de la source International Scientific Research Publications
Zhang, Sheng 1 ; Wang, Zhaoyu 1
@article{JNSA_2017_10_5_a4, author = {Zhang, Sheng and Wang, Zhaoyu}, title = {Bilinearization and new soliton solutions of {Whitham-Broer-Kaup} equations with time-dependent coefficients}, journal = {Journal of nonlinear sciences and its applications}, pages = {2324-2339}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2017}, doi = {10.22436/jnsa.010.05.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/} }
TY - JOUR AU - Zhang, Sheng AU - Wang, Zhaoyu TI - Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2324 EP - 2339 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/ DO - 10.22436/jnsa.010.05.05 LA - en ID - JNSA_2017_10_5_a4 ER -
%0 Journal Article %A Zhang, Sheng %A Wang, Zhaoyu %T Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients %J Journal of nonlinear sciences and its applications %D 2017 %P 2324-2339 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/ %R 10.22436/jnsa.010.05.05 %G en %F JNSA_2017_10_5_a4
Zhang, Sheng; Wang, Zhaoyu. Bilinearization and new soliton solutions of Whitham-Broer-Kaup equations with time-dependent coefficients. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2324-2339. doi : 10.22436/jnsa.010.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.05/
[1] Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1991 | DOI
[2] Travelling wave solutions of Drinfeld-Sokolov-Wilson, Whitham-Broer- Kaup and (2+1)-dimensional Broer-Kaup-Kupershmit equations and their applications, Chin. J. Phys. (2017) | DOI
[3] Analysis of the new technique to solution of fractional wave- and heat-like equation, Acta Phys. Polon. B, Volume 48 (2017), pp. 77-95
[4] The first integral method for Wu-Zhang nonlinear system with time-dependent coefficients, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci., Volume 16 (2015), pp. 160-167
[5] Introduction of soliton, (Chinese), Science Press, Beijing, 2006
[6] Families of rational solutions of the Kadomtsev-Petviashvili equation, Romanian Rep. Phys., Volume 68 (2016), pp. 1407-1424
[7] Multiple Riccati equations rational expansion method and complexiton solutions of the Whitham-Broer- Kaup equation, Phys. Lett. A, Volume 347 (2005), pp. 215-227 | Zbl | DOI
[8] A generalized method and general form solutions to the Whitham-Broer-Kaup equation, Chaos Solitons Fractals, Volume 22 (2004), pp. 675-682 | Zbl | DOI
[9] Elliptic equation rational expansion method and new exact travelling solutions for Whitham- Broer-Kaup equations, Chaos Solitons Fractals, Volume 26 (2005), pp. 231-246 | Zbl | DOI
[10] New soliton solutions to isospectral AKNS equations, (Chinese) ; translated from Chinese Ann. Math. Ser. A, 33 (2012), 205–216, Chinese J. Contemp. Math., Volume 33 (2012), pp. 167-176 | Zbl | DOI
[11] Exact and numerical traveling wave solutions of Whitham-Broer-Kaup equations, Appl. Math. Comput., Volume 167 (2005), pp. 1339-1349 | DOI | Zbl
[12] Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Phys. Lett. A, Volume 300 (2002), pp. 243-249 | DOI | Zbl
[13] Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., Volume 19 (1967), pp. 1095-1097 | DOI
[14] Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, Volume 30 (2006), pp. 700-708 | DOI
[15] Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., Volume 27 (1971), pp. 1192-1194 | DOI | Zbl
[16] Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Japan, Volume 33 (1972), pp. 1456-1458 | DOI
[17] Constructing solitary pattern solutions of the nonlinear dispersive Zakharov-Kuznetsov equation, Chaos Solitons Fractals, Volume 39 (2009), pp. 109-119 | DOI | Zbl
[18] On new exact special solutions of the GNLS(m, n, p, q) equations, Modern Phys. Lett. B, Volume 24 (2010), pp. 1769-1783 | Zbl | DOI
[19] Compact and noncompact structures of a three-dimensional 3DKP(m, n) equation with nonlinear dispersion, Appl. Math. Lett., Volume 26 (2013), pp. 437-444 | DOI | Zbl
[20] Some special structures for the generalized nonlinear Schrödinger equation with nonlinear dispersion, Waves Random Complex Media, Volume 23 (2013), pp. 77-88 | DOI
[21] Optical soliton solutions for generalized NLSE by using Jacobi elliptic functions, Optoelectron. Adv. Mat., Volume 9 (2015), pp. 1081-1087
[22] Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients, Optik, Volume 127 (2016), pp. 1056-1058 | DOI
[23] A new method for approximate solutions of some nonlinear equations: residual power series method, Adv. Mech. Eng., Volume 8 (2016), pp. 1-8 | DOI
[24] An extended method and its application to Whitham-Broer-Kaup equation and two-dimensional perturbed KdV equation, Appl. Math. Comput., Volume 172 (2006), pp. 664-677 | DOI | Zbl
[25] Exact traveling wave solutions of the Boussinesq-Burgers equation, Math. Comput. Modelling, Volume 49 (2009), pp. 666-671 | DOI
[26] A hybrid computational approach for Klein-Gordon equations on Cantor sets, Nonlinear Dynam., Volume 87 (2017), pp. 511-517 | Zbl | DOI
[27] Elastic-inelastic-interaction coexistence and double Wronskian solutions for the Whitham-Broer-Kaup shallow-water-wave model, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 3090-3096 | DOI | Zbl
[28] Parallel line rogue waves of the third-type Davey-Stewartson equation, Romanian Rep. Phys., Volume 68 (2016), pp. 1425-1446
[29] Supersymmetric modified Korteweg-de Vries equation: bilinear approach, Nonlinearity, Volume 18 (2005), pp. 1597-1603 | Zbl | DOI
[30] Exact solutions of Whitham-Broer-Kaup equations with variable coefficients, Acta Phys. Sin., Volume 63 (2014), pp. 1-9
[31] Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer- Verlag, Berlin, 1991
[32] Hirota bilinear form for the super-KdV hierarchy, Modern Phys. Lett. A, Volume 8 (1993), pp. 1739-1745 | DOI | Zbl
[33] Bäcklund transformation, Springer-Verlag, Berlin, 1978
[34] Numerical solution of nonlinear Jaulent-Miodek and Whitham-Broer-Kaup equations, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4602-4610 | DOI | Zbl
[35] Traveling wave solutions of Whitham-Broer-Kaup equations by homotopy perturbation method, J. King Saud Univ. Sci., Volume 22 (2010), pp. 173-176 | DOI
[36] Application of the variational iteration method to the Whitham-Broer-Kaup equations, Comput. Math. Appl., Volume 54 (2007), pp. 1079-1085 | Zbl | DOI
[37] Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., Volume 85 (2000), pp. 4502-4505 | DOI
[38] Nonautonomous solitons in external potentials, Phys. Rev. Lett., Volume 98 (2007), pp. 1-4 | DOI
[39] Nonautonomous matter-wave solitons near the Feshbach resonance, Phys. Rev. A, Volume 81 (2010), pp. 1-19 | DOI
[40] Bifurcation method and traveling wave solution to Whitham-Broer-Kaup equation, Appl. Math. Comput., Volume 171 (2005), pp. 677-702 | DOI | Zbl
[41] Application of the bifurcation method to the Whitham-Broer-Kaup-like equations, Math. Comput. Modelling, Volume 52 (2012), pp. 688-696 | Zbl | DOI
[42] Soliton solutions of nonlinear diffusion-reaction-type equations with time-dependent coefficients accounting for long-range diffusion, Nonlinear Dynam., Volume 86 (2016), pp. 2115-2126 | DOI
[43] Soliton solutions of the cubic-quintic nonlinear Schrodinger equation with variable coefficients, Romanian J. Phys., Volume 61 (2016), pp. 360-366
[44] Exact solutions for a compound KdV-Burgers equation, Phys. Lett. A, Volume 213 (1996), pp. 279-287 | DOI
[45] The Hirota’s bilinear method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera Kadomtsev-Petviashvili equation, Appl. Math. Comput., Volume 200 (2008), pp. 160-166 | DOI | Zbl
[46] The Painlevé property for partial differential equations, J. Math. Phys., Volume 24 (1983), pp. 522-526 | DOI
[47] A new integrable lattice hierarchy associated with a discrete \(3 \times 3\) matrix spectral problem: N-fold Darboux transformation and explicit solutions, Rep. Math. Phys., Volume 71 (2013), pp. 15-32 | Zbl | DOI
[48] Explicit and exact traveling wave solutions of Whitham-Broer-Kaup shallow water equations, Phys. Lett. A, Volume 285 (2001), pp. 76-80 | Zbl | DOI
[49] Exact travelling wave solutions of the Whitham-Broer-Kaup and Broer-Kaup-Kupershmidt equations, Chaos Solitons Fractals, Volume 24 (2005), pp. 549-556 | Zbl | DOI
[50] Multi-optical rogue waves of the Maxwell-Bloch equations, Romanian Rep. Phys., Volume 68 (2016), pp. 316-340
[51] Solitary wave and non-traveling wave solutions to two nonlinear evolution equations, Commun. Theor. Phys. (Beijing), Volume 44 (2005), pp. 479-482 | DOI
[52] New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water, Phys. Lett. A, Volume 285 (2001), pp. 355-362 | DOI | Zbl
[53] New explicit solutions of (1 + 1)-dimensional variable-coefficient Broer-Kaup system, Commun. Theor. Phys. (Beijing), Volume 54 (2010), pp. 965-970 | DOI | Zbl
[54] Local fractional integral transforms and their applications, Elsevier/Academic Press, Amsterdam, 2015 | DOI | Zbl
[55] Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, Volume 365 (2007), pp. 448-453 | DOI
[56] Exact solutions of a KdV equation with variable coefficients via Exp-function method, Nonlinear Dynam., Volume 52 (2008), pp. 11-17 | DOI | Zbl
[57] New exact solutions to breaking soliton equations and Whitham-Broer-Kaup equations, Appl. Math. Comput., Volume 217 (2010), pp. 1688-1696 | DOI | Zbl
[58] Multi-soliton solutions of a variable-coefficient KdV hierarchy, Nonlinear Dynam., Volume 78 (2014), pp. 1593-1600 | DOI
[59] Painlevé integrability and new exact solutions of the (4 + 1)-dimensional Fokas equation, Math. Probl. Eng., Volume 2015 (2015), pp. 1-8
[60] Painlevé analysis for a forced Korteveg-de Vries equation arisen in fluid dynamics of internal solitary waves, Therm. Sci., Volume 19 (2015), pp. 1223-1226
[61] Mixed spectral AKNS hierarchy from linear isospectral problem and its exact solutions, Open Phys., Volume 13 (2015), pp. 310-322
[62] Exact N-soliton solutions and dynamics of a new AKNS equation with time-dependent coefficients, Nonlinear Dynam., Volume 83 (2016), pp. 1043-1052 | Zbl | DOI
[63] Multisoliton solutions of a (2 + 1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method, Canad. J. Phys., Volume 92 (2014), pp. 184-190 | DOI
[64] The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations, Turkish J. Phys., Volume 39 (2015), pp. 165-177
[65] Bilinearization and new multisoliton solutions for the (4 + 1)-dimensional Fokas equation, Pramana, Volume 86 (2016), pp. 1259-1267 | DOI
[66] Variable-coefficient nonisospectral Toda lattice hierarchy and its exact solutions, Pramana, Volume 85 (2015), pp. 1143-1156 | DOI
[67] A generalized F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations, Appl. Math. Comput., Volume 183 (2006), pp. 1190-1200 | DOI | Zbl
[68] A generalized auxiliary equation method and its application to (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, J. Phys. A, Volume 40 (2007), pp. 227-248 | DOI | Zbl
[69] Exact solutions of a KdV equation hierarchy with variable coefficients, Int. J. Comput. Math., Volume 91 (2014), pp. 1601-1616 | DOI | Zbl
[70] An Exp-function method for a new N-soliton solutions with arbitrary functions of a (2 + 1)- dimensional vcBK system, Comput. Math. Appl., Volume 61 (2011), pp. 1923-1930 | DOI | Zbl
[71] Fractional sub-equation method and its applications to nonlinear fractional PDEs, Phys. Lett. A, Volume 375 (2011), pp. 1069-1073 | DOI | Zbl
[72] Bilinearization and new multi-soliton solutions of mKdV hierarchy with time-dependent coefficients, Open Phys., Volume 14 (2016), pp. 69-75 | DOI
Cité par Sources :