Voir la notice de l'article provenant de la source International Scientific Research Publications
Zheng, Dingwei 1 ; Wang, Pei 2
@article{JNSA_2017_10_5_a3, author = {Zheng, Dingwei and Wang, Pei}, title = {Weak \(\theta-\phi-\)contraction and discontinuity}, journal = {Journal of nonlinear sciences and its applications}, pages = {2318-2323}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2017}, doi = {10.22436/jnsa.010.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.04/} }
TY - JOUR AU - Zheng, Dingwei AU - Wang, Pei TI - Weak \(\theta-\phi-\)contraction and discontinuity JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2318 EP - 2323 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.04/ DO - 10.22436/jnsa.010.05.04 LA - en ID - JNSA_2017_10_5_a3 ER -
%0 Journal Article %A Zheng, Dingwei %A Wang, Pei %T Weak \(\theta-\phi-\)contraction and discontinuity %J Journal of nonlinear sciences and its applications %D 2017 %P 2318-2323 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.04/ %R 10.22436/jnsa.010.05.04 %G en %F JNSA_2017_10_5_a3
Zheng, Dingwei; Wang, Pei. Weak \(\theta-\phi-\)contraction and discontinuity. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2318-2323. doi : 10.22436/jnsa.010.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.04/
[1] A remark on discontinuity at fixed point, J. Math. Anal. Appl., Volume 445 (2017), pp. 1239-1241 | Zbl | DOI
[2] Fixed point theorems for Reich type contractions on metric spaces with a graph, Nonlinear Anal., Volume 75 (2012), pp. 3895-3901 | DOI
[3] Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput., Volume 217 (2011), pp. 5784-5789 | DOI
[4] A new generalization of the Banach contraction principle, J. Inequal. Appl., Volume 2014 (2014), pp. 1-8 | DOI
[5] Some results on fixed points, II, Amer. Math. Monthly, Volume 76 (1969), pp. 405-408
[6] Discontinuity and fixed points, J. Math. Anal. Appl., Volume 240 (1999), pp. 284-289 | DOI
[7] Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11 | DOI | Zbl
[8] A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443 | Zbl | DOI
[9] A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., Volume 226 (1977), pp. 257-290 | Zbl | DOI
[10] Contractive definitions and continuity, Fixed point theory and its applications, Berkeley, CA, (1986), Contemp. Math., Amer. Math. Soc., Providence, RI, Volume 72 (1988), pp. 233-245 | DOI
[11] New fixed point theorem under R-contractions, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-18 | Zbl | DOI
[12] Fixed point theorems for \(\alpha\psi\) -contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165 | DOI
[13] A new type of fixed point theorem in metric spaces, Nonlinear Anal., Volume 71 (2009), pp. 5313-5317 | DOI
[14] Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6 | DOI
[15] New fixed point theorems for \(\theta-\phi-\)contraction in complete metric spaces (Preprint) | DOI
Cité par Sources :