Improved conditions for neutral delay systems with novel inequalities
Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2309-2317.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper studies the stability problem of a class of neutral delay systems. It firstly establishes two novel integral inequalities, which are better than the same type inequalities found in the literature. Then it derives, by using the new inequalities and the Lyapunov functional method, some sufficient delay-dependent conditions for asymptotic stability of the neutral delay systems. Three numerical examples are provided to illustrate the advantage and effectiveness of the obtained results.
DOI : 10.22436/jnsa.010.05.03
Classification : 34D05, 26D10, 34k06
Keywords: New integral inequality, neutral delay system, delay-dependent stability, Lyapunov functional.

Xiong, L. L. 1 ; Cheng, J. 2 ; Liu, X. Z. 3 ; Wu, T. 1

1 School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, 650500, China
2 School of Science, Hubei University for Nationalities, Enshi, 445000, China
3 Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
@article{JNSA_2017_10_5_a2,
     author = {Xiong, L. L. and Cheng, J. and Liu, X. Z. and Wu, T.},
     title = {Improved conditions for neutral delay systems with novel inequalities},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {2309-2317},
     publisher = {mathdoc},
     volume = {10},
     number = {5},
     year = {2017},
     doi = {10.22436/jnsa.010.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/}
}
TY  - JOUR
AU  - Xiong, L. L.
AU  - Cheng, J.
AU  - Liu, X. Z.
AU  - Wu, T.
TI  - Improved conditions for neutral delay systems with novel inequalities
JO  - Journal of nonlinear sciences and its applications
PY  - 2017
SP  - 2309
EP  - 2317
VL  - 10
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/
DO  - 10.22436/jnsa.010.05.03
LA  - en
ID  - JNSA_2017_10_5_a2
ER  - 
%0 Journal Article
%A Xiong, L. L.
%A Cheng, J.
%A Liu, X. Z.
%A Wu, T.
%T Improved conditions for neutral delay systems with novel inequalities
%J Journal of nonlinear sciences and its applications
%D 2017
%P 2309-2317
%V 10
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/
%R 10.22436/jnsa.010.05.03
%G en
%F JNSA_2017_10_5_a2
Xiong, L. L.; Cheng, J.; Liu, X. Z.; Wu, T. Improved conditions for neutral delay systems with novel inequalities. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2309-2317. doi : 10.22436/jnsa.010.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/

[1] Chen, Y.-G.; Fei, S.-M.; Gu, Z.; Li, Y.-M. New mixed-delay-dependent robust stability conditions for uncertain linear neutral systems, IET Control Theory Appl., Volume 8 (2014), pp. 606-613

[2] Ding, L.-M.; He, Y.; Wu, M.; Ning, C.-Y. Improved mixed-delay-dependent asymptotic stability criteria for neutral systems, IET Control Theory Appl., Volume 9 (2015), pp. 2180-2187

[3] Fang, M.; Park, J. H. A multiple integral approach to stability of neutral time-delay systems, Appl. Math. Comput., Volume 224 (2013), pp. 714-718 | DOI | Zbl

[4] Fridman, E.; Shaked, U. Delay-dependent stability and \(H_\infty\) control: constant and time-varying delays, Internat. J. Control, Volume 76 (2003), pp. 48-60 | Zbl | DOI

[5] Han, Q.-L. Robust stability of uncertain delay-differential systems of neutral type, Automatica J. IFAC, Volume 38 (2002), pp. 719-723 | DOI

[6] Han, Q.-L. On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty, Automatica J. IFAC, Volume 40 (2004), pp. 1087-1092 | Zbl | DOI

[7] Han, Q.-L. On stability of linear neutral systems with mixed time delays: a discretized Lyapunov functional approach, Automatica J. IFAC, Volume 41 (2005), pp. 1209-1218 | Zbl | DOI

[8] He, Y.; Wang, Q.-G.; Lin, C.; Wu, M. Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems, Internat. J. Robust Nonlinear Control, Volume 15 (2005), pp. 923-933 | DOI

[9] He, Y.; Wu, M.; She, J.-H.; Liu, G.-P. Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Systems Control Lett., Volume 51 (2004), pp. 57-65 | DOI

[10] Kao, C.-Y.; Rantzer, A. Stability analysis of systems with uncertain time-varying delays, Automatica J. IFAC, Volume 43 (2007), pp. 959-970 | DOI

[11] Li, X.-G.; Zhu, X.-J.; Cela, A.; Reama, A. Stability analysis of neutral systems with mixed delays, Automatica J. IFAC, Volume 44 (2008), pp. 2968-2972 | DOI

[12] Liu, X.-G.; Wu, M.; Martin, R.; Tang, M.-L. Stability analysis for neutral systems with mixed delays, J. Comput. Appl. Math., Volume 202 (2007), pp. 478-497 | DOI

[13] Park, P. G.; Lee, W. I.; Lee, S Y. Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin Inst., Volume 352 (2015), pp. 1378-1396 | DOI

[14] Parlakçi, M. N. A. Robust stability of uncertain neutral systems: a novel augmented Lyapunov functional approach, IET Control Theory Appl., Volume 1 (2007), pp. 802-809

[15] Qian, W.; Liu, J.; Sun, Y.-X.; Fei, S.-M. A less conservative robust stability criteria for uncertain neutral systems with mixed delays, Math. Comput. Simulation, Volume 80 (2010), pp. 1007-1017 | Zbl | DOI

[16] Sun, J.; Liu, G. P. On improved delay-dependent stability criteria for neutral time-delay systems, Eur. J. Control, Volume 15 (2009), pp. 613-623 | DOI

[17] Sun, J.; Liu, G. P.; Chen, J. Delay-dependent stability and stabilization of neutral time-delay systems, Internat. J. Robust Nonlinear Control, Volume 19 (2009), pp. 1364-1375 | DOI

[18] Wu, M.; He, Y.; She, J.-H. New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE Trans. Automat. Control, Volume 49 (2004), pp. 2266-2271 | DOI | Zbl

[19] Xiong, L.-L.; Zhang, H.-Y.; Li, Y.-K.; Liu, Z.-X. Improved stabilization criteria for neutral time-delay systems, Math. Probl. Eng., Volume 2016 (2016), pp. 1-13

[20] Yue, D.; Han, Q.-L. A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model, IEEE Trans. Circuits Syst. II, Exp. Briefs, Volume 51 (2004), pp. 685-689 | DOI

[21] Zeng, H.-B.; He, Y.; Wu, M.; She, J.-H. Free-matrix-based integral inequality for stability analysis of systems with timevarying delay, IEEE Trans. Automat. Control, Volume 60 (2015), pp. 2768-2772 | DOI

[22] Zeng, H.-B.; He, Y.; Wu, M.; She, J.-H. New results on stability analysis for systems with discrete distributed delay, Automatica J. IFAC, Volume 60 (2015), pp. 189-192 | Zbl | DOI

[23] Zhao, N.; Lin, C.; Chen, B.; Wang, Q.-G. A new double integral inequality and application to stability test for time-delay systems, Appl. Math. Lett., Volume 65 (2017), pp. 26-31 | Zbl | DOI

Cité par Sources :