Voir la notice de l'article provenant de la source International Scientific Research Publications
Xiong, L. L. 1 ; Cheng, J. 2 ; Liu, X. Z. 3 ; Wu, T. 1
@article{JNSA_2017_10_5_a2, author = {Xiong, L. L. and Cheng, J. and Liu, X. Z. and Wu, T.}, title = {Improved conditions for neutral delay systems with novel inequalities}, journal = {Journal of nonlinear sciences and its applications}, pages = {2309-2317}, publisher = {mathdoc}, volume = {10}, number = {5}, year = {2017}, doi = {10.22436/jnsa.010.05.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/} }
TY - JOUR AU - Xiong, L. L. AU - Cheng, J. AU - Liu, X. Z. AU - Wu, T. TI - Improved conditions for neutral delay systems with novel inequalities JO - Journal of nonlinear sciences and its applications PY - 2017 SP - 2309 EP - 2317 VL - 10 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/ DO - 10.22436/jnsa.010.05.03 LA - en ID - JNSA_2017_10_5_a2 ER -
%0 Journal Article %A Xiong, L. L. %A Cheng, J. %A Liu, X. Z. %A Wu, T. %T Improved conditions for neutral delay systems with novel inequalities %J Journal of nonlinear sciences and its applications %D 2017 %P 2309-2317 %V 10 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/ %R 10.22436/jnsa.010.05.03 %G en %F JNSA_2017_10_5_a2
Xiong, L. L.; Cheng, J.; Liu, X. Z.; Wu, T. Improved conditions for neutral delay systems with novel inequalities. Journal of nonlinear sciences and its applications, Tome 10 (2017) no. 5, p. 2309-2317. doi : 10.22436/jnsa.010.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.010.05.03/
[1] New mixed-delay-dependent robust stability conditions for uncertain linear neutral systems, IET Control Theory Appl., Volume 8 (2014), pp. 606-613
[2] Improved mixed-delay-dependent asymptotic stability criteria for neutral systems, IET Control Theory Appl., Volume 9 (2015), pp. 2180-2187
[3] A multiple integral approach to stability of neutral time-delay systems, Appl. Math. Comput., Volume 224 (2013), pp. 714-718 | DOI | Zbl
[4] Delay-dependent stability and \(H_\infty\) control: constant and time-varying delays, Internat. J. Control, Volume 76 (2003), pp. 48-60 | Zbl | DOI
[5] Robust stability of uncertain delay-differential systems of neutral type, Automatica J. IFAC, Volume 38 (2002), pp. 719-723 | DOI
[6] On robust stability of neutral systems with time-varying discrete delay and norm-bounded uncertainty, Automatica J. IFAC, Volume 40 (2004), pp. 1087-1092 | Zbl | DOI
[7] On stability of linear neutral systems with mixed time delays: a discretized Lyapunov functional approach, Automatica J. IFAC, Volume 41 (2005), pp. 1209-1218 | Zbl | DOI
[8] Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems, Internat. J. Robust Nonlinear Control, Volume 15 (2005), pp. 923-933 | DOI
[9] Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, Systems Control Lett., Volume 51 (2004), pp. 57-65 | DOI
[10] Stability analysis of systems with uncertain time-varying delays, Automatica J. IFAC, Volume 43 (2007), pp. 959-970 | DOI
[11] Stability analysis of neutral systems with mixed delays, Automatica J. IFAC, Volume 44 (2008), pp. 2968-2972 | DOI
[12] Stability analysis for neutral systems with mixed delays, J. Comput. Appl. Math., Volume 202 (2007), pp. 478-497 | DOI
[13] Auxiliary function-based integral inequalities for quadratic functions and their applications to time-delay systems, J. Franklin Inst., Volume 352 (2015), pp. 1378-1396 | DOI
[14] Robust stability of uncertain neutral systems: a novel augmented Lyapunov functional approach, IET Control Theory Appl., Volume 1 (2007), pp. 802-809
[15] A less conservative robust stability criteria for uncertain neutral systems with mixed delays, Math. Comput. Simulation, Volume 80 (2010), pp. 1007-1017 | Zbl | DOI
[16] On improved delay-dependent stability criteria for neutral time-delay systems, Eur. J. Control, Volume 15 (2009), pp. 613-623 | DOI
[17] Delay-dependent stability and stabilization of neutral time-delay systems, Internat. J. Robust Nonlinear Control, Volume 19 (2009), pp. 1364-1375 | DOI
[18] New delay-dependent stability criteria and stabilizing method for neutral systems, IEEE Trans. Automat. Control, Volume 49 (2004), pp. 2266-2271 | DOI | Zbl
[19] Improved stabilization criteria for neutral time-delay systems, Math. Probl. Eng., Volume 2016 (2016), pp. 1-13
[20] A delay-dependent stability criterion of neutral systems and its application to a partial element equivalent circuit model, IEEE Trans. Circuits Syst. II, Exp. Briefs, Volume 51 (2004), pp. 685-689 | DOI
[21] Free-matrix-based integral inequality for stability analysis of systems with timevarying delay, IEEE Trans. Automat. Control, Volume 60 (2015), pp. 2768-2772 | DOI
[22] New results on stability analysis for systems with discrete distributed delay, Automatica J. IFAC, Volume 60 (2015), pp. 189-192 | Zbl | DOI
[23] A new double integral inequality and application to stability test for time-delay systems, Appl. Math. Lett., Volume 65 (2017), pp. 26-31 | Zbl | DOI
Cité par Sources :